首页> 外文期刊>Journal of the mechanical behavior of biomedical materials >Multiscale mechanobiology of de novo bone generation, remodeling and adaptation of autograft in a common ovine femur model.
【24h】

Multiscale mechanobiology of de novo bone generation, remodeling and adaptation of autograft in a common ovine femur model.

机译:在常见的绵羊股骨模型中从头进行骨骼生成,重塑和自体移植的多尺度力学生物学研究。

获取原文
获取原文并翻译 | 示例
       

摘要

The link between mechanics and biology in the generation and the adaptation of bone has been studied for more than a century in the context of skeletal development and fracture healing. However, the interplay between mechanics and biology in de novo generation of bone in postnatal defects as well as healing of morcellized bone graft or massive cortical bone autografts is less well understood. To address this, here we integrate insights from our previously published studies describing the mechanobiology on both de novo bone generation and graft healing in a common ovine femoral defect model. Studying these effects in a common experimental model provides a unique opportunity to elucidate factors conducive to harnessing the regenerative power of the periosteum, and ultimately, to provide mechanistic insights into the multiscale mechanobiology of bone generation, remodeling and adaptation. Taken together, the studies indicate that, as long as adequate, directional transport of cells and molecules can be insured (e.g. with periosteum in situ or a delivery device), biological factors intrinsic to the periosteum suffice to bridge critical sized bone defects, even in the absence of a patent blood supply. Furthermore, mechanical stimuli are crucial for the success of periosteal bone generation and bone graft healing. Interestingly, areas of highest periosteal strain around defects correlate with greatest amounts albeit not greatest mineralization of newly generated bone. This may indicate a role for convection enhanced transport of cells and molecules in modulation of tissue generation by pluripotent cells that ingress into the defect center, away from the periosteum and toward the surface of the intramedullary nail that fills the medullary cavity. These insights bring us much closer to understanding the mechanobiological environment and stimuli that stimulate the proliferation and differentiation of periosteum-derived progenitor cells and ultimately drive the generation of new bone tissue. Furthermore, these insights provide a foundation to create virtual predictive computational models of bone mechanophysiology, to develop cell seeding protocols for scale up and manufacture of engineered tissues, to optimize surgical procedures, and to develop post-surgical therapies with the ultimate goal of achieving the best possible healing outcomes for treatment and/or reconstruction of postnatal bone defects.
机译:在骨骼发育和骨折愈合的背景下,已经研究了力学与生物学之间的联系以及骨骼的适应性。然而,在产后缺陷的新生骨生成中,力学与生物学之间的相互作用以及粉碎的骨移植物或大量皮质骨自体移植物的愈合尚不清楚。为了解决这个问题,在这里,我们结合了以前发表的研究中的见解,这些研究描述了在常见的绵羊股骨缺损模型中从头产生骨骼和移植物愈合的力学生物学。在一个普通的实验模型中研究这些作用提供了一个独特的机会,以阐明有助于利用骨膜的再生能力的因素,并最终为深入了解骨骼生成,重塑和适应的多尺度力学生物学提供机制见解。综上所述,研究表明,只要能确保细胞和分子的定向运输(例如,使用骨膜原位或递送装置),骨膜固有的生物学因素就足以弥合临界大小的骨缺损,即使在没有专利的血液供应。此外,机械刺激对于骨膜骨生成和骨移植愈合的成功至关重要。有趣的是,缺陷周围骨膜应变最高的区域与最大量相关,尽管新生成的骨矿化程度不是最大。这可能表明对流增强的细胞和分子的运输在多能细胞进入组织缺陷的调制中的作用,这些多能细胞进入缺损中心,远离骨膜并向充满髓腔的髓内钉表面移动。这些见解使我们更加了解刺激骨膜源祖细胞增殖和分化并最终驱动新骨组织生成的机械生物学环境和刺激。此外,这些见识为创建骨骼力学生理学的虚拟预测计算模型,开发用于扩大规模和制造工程组织的细胞播种方案,优化手术程序以及开发手术后疗法以实现最终目标提供了基础。治疗和/或重建产后骨缺损的最佳可能愈合结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号