首页> 外文期刊>Talanta: The International Journal of Pure and Applied Analytical Chemistry >Quantitative and qualitative prediction of corneal permeability for drug-like compounds
【24h】

Quantitative and qualitative prediction of corneal permeability for drug-like compounds

机译:药物样化合物角膜通透性的定量和定性预测

获取原文
获取原文并翻译 | 示例

摘要

A set of 69 drug-like compounds with corneal permeability was studied using quantitative and qualitative modeling techniques. Multiple linear regression (MLR) and multilayer perceptron neural network (MLP-NN) were used to develop quantitative relationships between the corneal permeability and seven molecular descriptors selected by stepwise MLR and sensitivity analysis methods. In order to evaluate the models, a leave many out cross-validation test was performed, which produced the statistic Q~2 = 0.584 and SPRESS = 0.378 for MLR and Q~2 = 0.774 and SPRESS = 0.087 for MLP-NN. The obtained results revealed the suitability of MLP-NN for the prediction of corneal permeability. The contribution of each descriptor to MLP-NN model was evaluated. It indicated the importance of the molecular volume and weight. The pattern recognition methods principal component analysis (PCA) and hierarchical clustering analysis (HCA) have been employed in order to investigate the possible qualitative relationships between the molecular descriptors and the corneal permeability. The PCA and HCA results showed that, the data set contains two groups. Then, the same descriptors used in quantitative modeling were considered as inputs of counter propagation neural network (CPNN) to classify the compounds into low permeable (LP) and very low permeable (VLP) categories in supervised manner. The overall classification non error rate was 95.7% and 95.4% for the training and prediction test sets, respectively. The results revealed the ability of CPNN to correctly recognize the compounds belonging to the categories. The proposed models can be successfully used to predict the corneal permeability values and to classify the compounds into LP and VLP ones.
机译:使用定量和定性建模技术研究了69种具有角膜通透性的药物样化合物。使用多元线性回归(MLR)和多层感知器神经网络(MLP-NN)来建立角膜通透性与通过逐步MLR和敏感性分析方法选择的七个分子描述符之间的定量关系。为了评估模型,进行了遗漏法交叉验证测试,该测试对MLR产生了统计Q〜2 = 0.584和SPRESS = 0.378,对MLP-NN产生了Q〜2 = 0.774和SPRESS = 0.087。获得的结果表明,MLP-NN适用于预测角膜通透性。评估每个描述符对MLP-NN模型的贡献。它表明了分子体积和重量的重要性。为了研究分子描述符和角膜通透性之间可能的定性关系,已采用模式识别方法主成分分析(PCA)和层次聚类分析(HCA)。 PCA和HCA结果表明,数据集包含两组。然后,在定量建模中使用的相同描述符被视为反向传播神经网络(CPNN)的输入,以监督方式将化合物分为低渗透性(LP)和极低渗透性(VLP)类别。训练和预测测试集的总体分类无错误率分别为95.7%和95.4%。结果表明,CPNN能够正确识别属于该类别的化合物。所提出的模型可以成功地用于预测角膜通透性值并将化合物分为LP和VLP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号