...
首页> 外文期刊>Protein Expression and Purification >The kinetic locking-on strategy for bioaffinity purification: further studies with bovine liver glutamate dehydrogenase.
【24h】

The kinetic locking-on strategy for bioaffinity purification: further studies with bovine liver glutamate dehydrogenase.

机译:生物亲和纯化的动力学锁定策略:用牛肝谷氨酸脱氢酶进行进一步研究。

获取原文
获取原文并翻译 | 示例
           

摘要

The locking-on strategy uses soluble analogues of the enzymes specific substrate to produce biospecific adsorption of individual NAD(P)(+)-dependent dehydrogenases on immobilized NAD(P)(+) derivatives, which is so selective that a single enzyme activity can be purified from crude cellular extracts in a single chromatographic step with yields approaching 100%. However, attempts to further develop and apply this strategy to the biospecific chromatographic purification of a range of NAD(P)(+)-dependent dehydrogenases revealed some anomalous chromatographic behavior and certain unexplained phenomenon. Much of this can be attributed to nonbiospecific interference effects. Identification and elimination of this interference is discussed in the present study focusing on bovine liver glutamate dehydrogenase (GDH; EC 1.4.1.3) as the "test" enzyme. Results further confirm the potential of the locking-on strategy for the rapid purification of NAD(P)(+)-dependent dehydrogenases and provide further insight into the parameters which should be considered during the development of a truly biospecific affinity chromatographic system based on the locking-on strategy. The kinetic mechanism of bovine liver GDH has been the topic of much controversy with some reports advocating a sequential ordered mechanism of substrate binding and others reporting a sequential random mechanism. Since the kinetic locking-on strategy is dependent on the target NAD(P)(+)-dependent dehydrogenase having an ordered sequential mechanism of substrate binding, the bioaffinity chromatographic behavior of bovine liver GDH using the locking-on tactic suggests that this enzyme has an ordered sequential mechanism of substrate binding under a variety of experimental conditions when NAD(+) is used as cofactor. Copyright 1999 Academic Press.
机译:锁定策略使用酶特异性底物的可溶性类似物在固定的NAD(P)(+)衍生物上产生单个NAD(P)(+)依赖性脱氢酶的生物特异性吸附,其选择性如此高,以至于单一酶活性可以可以在单个色谱步骤中从粗制细胞提取物中纯化得到,收率接近100%。但是,尝试进一步开发并将此策略应用于一系列NAD(P)(+)依赖性脱氢酶的生物特异性色谱纯化,发现了一些异常的色谱行为和某些无法解释的现象。其中大部分可以归因于非生物特异性干扰作用。在本研究中,讨论和鉴定这种干扰的方法是:将牛肝谷氨酸脱氢酶(GDH; EC 1.4.1.3)用作“测试”酶。结果进一步证实了锁定策略可用于快速纯化NAD(P)(+)依赖性脱氢酶的潜力,并提供了进一步的洞察力,以了解在开发基于AAD的真正生物特异性亲和色谱系统时应考虑的参数。锁定策略。牛肝GDH的动力学机制一直是许多争议的话题,一些报道主张底物结合的顺序有序机制,而另一些报道则主张顺序随机机制。由于动力学锁定策略依赖于靶NAD(P)(+)依赖性脱氢酶,具有顺序的底物结合顺序机制,因此采用锁定策略的牛肝GDH的生物亲和色谱行为表明该酶具有当使用NAD(+)作为辅因子时,在各种实验条件下底物结合的有序顺序机制。版权所有1999 Academic Press。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号