首页> 外文期刊>Proteins: Structure, Function, and Genetics >Crystallographic and computational studies on 4-phenyl-N-(beta-D-glucopyranosyl)-1H-1,2,3-triazole-1-acetamide, an inhibitor of glycogen phosphorylase: comparison with alpha-D-glucose, N-acetyl-beta-D-glucopyranosylamine and N-benzoyl-N'-beta-D-gluco
【24h】

Crystallographic and computational studies on 4-phenyl-N-(beta-D-glucopyranosyl)-1H-1,2,3-triazole-1-acetamide, an inhibitor of glycogen phosphorylase: comparison with alpha-D-glucose, N-acetyl-beta-D-glucopyranosylamine and N-benzoyl-N'-beta-D-gluco

机译:糖原磷酸化酶抑制剂4-苯基-N-(β-D-吡喃葡萄糖基)-1H-1,2,3-三唑-1-乙酰胺的晶体学和计算研究:与α-D-葡萄糖,N-乙酰基的比较-β-D-吡喃葡萄糖胺和N-苯甲酰基-N'-β-D-葡萄糖

获取原文
获取原文并翻译 | 示例
       

摘要

4-Phenyl-N-(beta-D-glucopyranosyl)-1H-1,2,3-triazole-1-acetamide (glucosyltriazolylacetamide) has been studied in kinetic and crystallographic experiments with glycogen phosphorylase b (GPb), in an effort to utilize its potential as a lead for the design of potent antihyperglycaemic agents. Docking and molecular dynamics (MD) calculations have been used to monitor more closely the binding modes in operation and compare the results with experiment. Kinetic experiments in the direction of glycogen synthesis showed that glucosyltriazolylacetamide is a better inhibitor (K(i) = 0.18 mM) than the parent compound alpha-D-glucose (K(i) = 1.7 mM) or beta-D-glucose (K(i) = 7.4 mM) but less potent inhibitor than the lead compound N-acetyl-beta-D-glucopyranosylamine (K(i) = 32 microM). To elucidate the molecular basis underlying the inhibition of the newly identified compound, we determined the structure of GPb in complex with glucosyltriazolylacetamide at 100 K to 1.88 A resolution, and the structure of the compound in the free form. Glucosyltriazolylacetamide is accommodated in the catalytic site of the enzyme and the glucopyranose interacts in a manner similar to that observed in the GPb-alpha-D-glucose complex, while the substituent group in the beta-position of the C1 atom makes additional hydrogen bonding and van der Waals interactions to the protein. A bifurcated donor type hydrogen bonding involving O3H, N3, and N4 is seen as an important structural motif strengthening the binding of glucosyltriazolylacetamide with GP which necessitated change in the torsion about C8-N2 bond by about 62 degrees going from its free to the complex form with GPb. On binding to GP, glucosyltriazolylacetamide induces significant conformational changes in the vicinity of this site. Specifically, the 280s loop (residues 282-288) shifts 0.7 to 3.1 A (CA atoms) to accommodate glucosyltriazolylacetamide. These conformational changes do not lead to increased contacts between the inhibitor and the protein that would improve ligand binding compared with the lead compound. In the molecular modeling calculations, the GOLD docking runs with and without the crystallographic ordered cavity waters using the GoldScore scoring function, and without cavity waters using the ChemScore scoring function successfully reproduced the crystallographic binding conformation. However, the GLIDE docking calculations both with (GLIDE XP) and without (GLIDE SP and XP) the cavity water molecules were, impressively, further able to accurately reproduce the finer details of the GPb-glucosyltriazolylacetamide complex structure. The importance of cavity waters in flexible receptor MD calculations compared to "rigid" (docking) is analyzed and highlighted, while in the MD itself very little conformational flexibility of the glucosyltriazolylacetamide ligand was observed over the time scale of the simulations.
机译:为了通过动力学和晶体学实验,使用糖原磷酸化酶b(GPb)研究了4-苯基-N-(β-D-吡喃葡萄糖基)-1H-1,2,3-三唑-1-乙酰胺(葡糖基三唑基乙酰胺)。利用其潜力设计有效的降血糖药。对接和分子动力学(MD)计算已用于更紧密地监控操作中的结合模式,并将结果与​​实验进行比较。糖原合成方向的动力学实验表明,葡糖基三唑基乙酰胺是一种更好的抑制剂(K(i)= 0.18 mM),它比母体化合物α-D-葡萄糖(K(i)= 1.7 mM)或β-D-葡萄糖(K (i)= 7.4 mM),但抑制作用比先导化合物N-乙酰基-β-D-吡喃葡萄糖胺(K(i)= 32 microM)弱。为了阐明抑制新鉴定化合物的分子基础,我们确定了在100 K至1.88 A分辨率下与糖基三唑基乙酰胺复合的GPb的结构,以及游离形式的化合物的结构。葡萄糖基三唑基乙酰胺被容纳在酶的催化位点中,吡喃葡萄糖的相互作用类似于在GPb-α-D-葡萄糖络合物中观察到的方式,而C1原子的β位置上的取代基进行了额外的氢键和范德华与蛋白质的相互作用。涉及O3H,N3和N4的分叉供体型氢键被认为是一个重要的结构基序,可增强葡糖基三唑基乙酰胺与GP的结合,这需要改变C8-N2键的扭转度,使其从自由形式变为复杂形式约62度。与GPb。与GP结合后,葡糖基三唑基乙酰胺会在该位点附近诱导显着的构象变化。具体而言,280s循环(残基282-288)将0.7移至3.1 A(CA原子)以容纳葡糖基三唑基乙酰胺。与先导化合物相比,这些构象变化不会导致抑制剂与蛋白质之间的接触增加,从而不会改善配体结合。在分子建模计算中,使用GoldScore评分功能在有和没有晶体学有序腔体水的情况下进行GOLD对接,而使用ChemScore评分功能在没有腔体水的情况下进行GOLD对接成功地重现了晶体结合构象。但是,无论是使用(GLIDE XP)还是不使用(GLIDE SP和XP)空腔水分子,GLIDE对接计算都可以进一步准确地再现GPb-葡萄糖基三唑基乙酰胺复合物结构的更精细细节。分析和强调了腔水在柔性受体MD计算中与“刚性”(对接)相比的重要性,而在MD本身中,在模拟的时间范围内,几乎没有观察到葡糖基三唑基乙酰胺配体的构象柔性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号