...
首页> 外文期刊>Progress in photovoltaics >Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation
【24h】

Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation

机译:微晶硅太阳能电池:衬底温度对裂纹的影响及其在后氧化中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Microcrystalline silicon (μc-Si:H) cells can reach efficiencies up to typically 10% and are usually incorporated in tandem micromorph devices. When cells are grown on rough substrates, "cracks" can appear in the μc-Si:H layers. Previous works have demonstrated that these cracks have mainly detrimental effects on the fill factor and open-circuit voltage, and act as bad diodes with a high reverse saturation current. In this paper, we clarify the nature of the cracks, their role in post-oxidation processes, and indicate how their density can be reduced. Regular secondary ion mass spectrometry (SIMS) and local nano-SIMS measurements show that these cracks are prone to local post-oxidation and lead to apparent high oxygen content in the layer. Usually the number of cracks can be decreased with an appropriate modification of the substrate surface morphology, but then, the required light scattering effect is reduced due to a lower roughness. This study presents an alternative/complementary way to decrease the crack density by increasing the substrate temperature during deposition. These results, also obtained when performing numerical simulation of the growth process, are attributed to the enhanced surface diffusion of the adatoms at higher deposition temperature. We evaluate the cracks density by introducing a fast method to count cracks with good statistics over approximately 4000 μm of sample cross-section. This'method is proven to be useful to quickly visualize the impact of substrate morphology on the density of cracks in microcrystalline and in micromorph devices, which is an important issue in the manufacturing process of modules.
机译:微晶硅(μc-Si:H)电池的效率通常可达到10%,通常并入串联微晶器件中。当细胞在粗糙的基板上生长时,“裂纹”会出现在μc-Si:H层中。先前的研究表明,这些裂纹主要对填充系数和开路电压产生有害影响,并充当具有高反向饱和电流的不良二极管。在本文中,我们阐明了裂纹的性质,裂纹在后氧化过程中的作用,并指出了如何降低裂纹的密度。常规的二次离子质谱(SIMS)和局部纳米SIMS测量表明,这些裂纹易于发生局部后氧化,并导致该层中明显的高氧含量。通常,可以通过适当地改变基板表面形态来减少裂纹的数量,但是随后,由于较低的粗糙度而降低了所需的光散射效果。这项研究提出了一种替代/补充的方法,可通过在沉积过程中提高基板温度来降低裂纹密度。这些结果也是在进行生长过程的数值模拟时获得的,这归因于较高沉积温度下吸附原子的表面扩散增强。我们通过引入一种快速的方法来对裂纹密度进行评估,该方法可以对大约4000μm的样品横截面进行统计并获得良好的裂纹。事实证明,该方法可用于快速可视化基板形态对微晶器件和微晶器件中裂纹密度的影响,这是模块制造过程中的重要问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号