首页> 外文期刊>Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems >Validation of filtered two-fluid models for gas-particle flows against experimental data from bubbling fluidized bed
【24h】

Validation of filtered two-fluid models for gas-particle flows against experimental data from bubbling fluidized bed

机译:根据鼓泡流化床的实验数据验证过滤后的两流体模型的气体颗粒流

获取原文
获取原文并翻译 | 示例

摘要

Predictions of simulations based on filtered Two-Fluid Models (TFMs) with constitutive relations for filtered fluid-particle drag coefficient and filtered stresses proposed by Igci and Sundaresan [Ind. Eng. Chem. Res. 50 (2011) 13190-13201] and Milioli et al. [AIChE J. 59 (2013) 3265-3275] were compared against experimental data from a bubbling fluidized bed challenge problem put forward by the National Energy Technology Laboratory and Particulate Solids Research Inc. It is found that the most important correction to filtered models is a modification to the drag, and filtered stresses play a secondary role at best. As expected, coarse grid simulations using the kinetic-theory based TFM over-predicted the gas-particle drag force, yielding unphysical bed expansion. The filtered fluid-particle drag model proposed by Igci and Sundaresan that classifies the inhomogeneity in sub-filter scale flow structures using filter size and filtered particle volume fraction as markers also predicted unphysical bed expansion. Refined filtered drag models proposed by Milioli et al. based on filtered fluid-particle slip velocity as an additional marker led to good agreement with experimental data on bed expansion and the time-averaged gas pressure gradient. It was also observed that inadequate grid resolution in the region between gas distributor and the adjacent cylindrical wall of the test unit could lead to spurious asymmetric gas-particle flow predictions. With the inclusion of adequate inflation layer elements in that region, flow predictions became nearly symmetric with little to no effect on bed expansion predictions. However, it dramatically and qualitatively altered the details of gas-particle structures in the bed. (C) 2015 Elsevier B.V. All rights reserved.
机译:基于过滤的两流体模型(TFM)的模拟预测,该模型由Igci和Sundaresan提出的过滤后的流体颗粒阻力系数和过滤后的应力本构关系[Ind。 。化学Res。 50(2011)13190-13201]和Milioli等。 [AIChE J. 59(2013)3265-3275]与美国国家能源技术实验室和微粒固体研究公司提出的冒泡流化床挑战问题的实验数据进行了比较。发现对过滤模型最重要的修正是对阻力的修改,过滤后的应力最多只能起到次要作用。不出所料,使用基于动力学理论的TFM进行的粗网格模拟过度预测了气体颗粒的阻力,从而产生了非物理的床层膨胀。由Igci和Sundaresan提出的过滤后的流体颗粒阻力模型,使用过滤器尺寸和过滤后的颗粒体积分数作为标记物,对子过滤器规模流动结构中的不均匀性进行分类,还预测了非物理床层膨胀。 Milioli等人提出的改进的过滤阻力模型。基于过滤后的流体-颗粒滑动速度作为附加标记,可以与关于床膨胀和时间平均气压梯度的实验数据很好地吻合。还观察到,在气体分配器和测试单元的相邻圆柱壁之间的区域中,网格分辨率不足会导致虚假的不对称气体颗粒流量预测。通过在该区域中包含足够的膨胀层元素,流量预测变得几乎对称,而对床膨胀预测几乎没有影响。但是,它显着和定性地改变了床中气体颗粒结构的细节。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号