首页> 外文期刊>Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems >QUICKER: Quantifying Uncertainty In Computational Knowledge Engineering Rapidly-A rapid methodology for uncertainty analysis
【24h】

QUICKER: Quantifying Uncertainty In Computational Knowledge Engineering Rapidly-A rapid methodology for uncertainty analysis

机译:快速指南:快速量化计算知识工程中的不确定性-一种用于不确定性分析的快速方法

获取原文
获取原文并翻译 | 示例
           

摘要

Most engineering systems have some degree of uncertainty in their input parameters, either of a stochastic nature or on account of a lack of complete information. The interaction of these uncertain input parameters, and the propagation of uncertainty through engineering systems, lead to the stochastic nature of the system performance and outputs. Quantifying the uncertainty in an experiment or computational simulation requires sampling over the uncertain range of input parameters and propagating the uncertainty through a computational model or experiment to quantify the output parameter uncertainty. Conventional direct sampling methods for input uncertainty propagation, such as Monte Carlo sampling or Latin Hypercube sampling, require a very large number of samples for convergence of the statistical parameters, such as mean and standard deviation, and can be prohibitively time-consuming. This computational tedium has been partially eliminated through the use of meta-models, which approximate a computational simulation or experiment via a response surface, but the computational time savings from these models are limited to systems with a small number of uncertain input parameters. Toward addressing the challenge of input uncertainty propagation, this paper presents a new uncertainty analysis methodology, QUICKER: Quantifying Uncertainty In Computational Knowledge Engineering Rapidly, that can reduce sample sizes by orders of magnitude while still maintaining comparable accuracy to direct sampling methods. In this paper, the QUICKER methodology is described and demonstrated with both analytical and computational scenarios.
机译:大多数工程系统的输入参数都有一定程度的不确定性,可能是随机的,或者是由于缺乏完整的信息。这些不确定的输入参数的相互作用以及不确定性在工程系统中的传播,导致系统性能和输出的随机性。量化实验或计算仿真中的不确定性需要在不确定的输入参数范围内进行采样,并通过计算模型或实验传播不确定性以量化输出参数的不确定性。用于输入不确定性传播的常规直接采样方法(例如蒙特卡洛采样或Latin Hypercube采样)需要大量的样本来收敛统计​​参数(例如均值和标准差),并且会非常耗时。通过使用元模型可以部分消除此计算乏味,该元模型可以通过响应面近似进行计算模拟或实验,但是这些模型所节省的计算时间仅限于具有少量不确定输入参数的系统。为了解决输入不确定性传播的挑战,本文提出了一种新的不确定性分析方法:QUICKER:快速量化计算知识工程中的不确定性,可以将样本数量减少几个数量级,同时仍保持与直接采样方法相当的准确性。本文介绍了QUICKER方法,并在分析和计算场景中进行了演示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号