首页> 外文学位 >Development of Carbonaceous Chemistry for Computational Modeling (C3M) with Application of Uncertainty Quantification (UQ) Analysis for Coal Gasification Kinetics in Computational Fluid Dynamics (CFD) Modeling.
【24h】

Development of Carbonaceous Chemistry for Computational Modeling (C3M) with Application of Uncertainty Quantification (UQ) Analysis for Coal Gasification Kinetics in Computational Fluid Dynamics (CFD) Modeling.

机译:用于计算模型(C3M)的碳质化学的发展,以及用于气化动力学的不确定性量化(UQ)分析在计算流体动力学(CFD)建模中的应用。

获取原文
获取原文并翻译 | 示例

摘要

In association with Department of Energy.s National Energy Technology Laboratory (NETL), a software platform entitled Carbonaceous Chemistry for Computational Modeling (C3M) that can access a variety of kinetic processes and reaction mechanisms typically found in coal gasification, gas clean-up, and carbon capture processes, has been developed to overcome the limitations in terms of applicable operating conditions and fuel types. It interfaces with CFD software such as Multiphase Flow with Interphase Exchanges (MFIX) developed at NETL, ANSYS-FLUENT by ANSYS Inc., and BARRACUDA by CPFD Software and provides relevant parameters to simulate chemical kinetics and/or to replicate laboratory data. The reaction kinetics data in C3M are provided by one or more detailed reaction models such as PC Coal Lab (PCCL), Chemical Percolation Model for Coal Devolatilization (CPD), Solomon.s Functional-Group, Depolymerization, Vaporization, Cross-linking (FGDVC) model, or through experimental data generated at NETL. Algorithms were written to create this interface and to extract the kinetic information from all models. This functionality provides the CFD user with a framework to conduct virtual kinetic experiments to evaluate kinetic predictions as a function of fuel and sorbent type and/or operating conditions. The effort on the user.s part to search, analyze and to check the accuracy of the kinetics of interest is drastically reduced. Validity and compatibility of C3M kinetics were tested by implementing them in a (2-D) transport gasifier and in an industrial GE Texaco gasifier model (1-D). The predicted exit gas composition and trends of gas species matched very closely with the experimental and industrial data. To improve the kinetic database, a detailed coal/biomass derived soot literature review was completed. It was found that there is a gap in coal derived soot formation and gasification kinetics for high temperature and pressure operating conditions. In addition to the kinetic studies, uncertainty quantification (UQ) techniques were employed in the CFD models to study the variations of chemical reaction kinetics in a coal gasifier. The uncertainty in exit gas composition based on the variations in input parameters such as temperature, pressure, heating rate and coal feed composition were implemented. Changes in devolatilization product yields (such as mass fractions of CO, CO2, H2, tar, H2O, and CH4 along with total volatile yield) were used as response variables and were recorded and correlated based on distributions of input parameters such as temperature, pressure and heating rates. The correlations among the response variables and input parameters were investigated by computing a correlation matrix. The uncertainties in output responses were in close agreement with data reported in literature. This study strongly suggested the importance of considering uncertainties in chemical reaction kinetics in CFD modeling.
机译:与能源部国家能源技术实验室(NETL)一起,开发了一个名为“碳质化学模型”(C3M)的软件平台,该平台可以访问通常在煤气化,气体净化,为了克服适用工作条件和燃料类型方面的限制,已经开发了碳捕集工艺和碳捕集工艺。它与CFD软件相连接,例如在NETL开发的多相交换多相流(MFIX),ANSYS Inc.开发的ANSYS-FLUENT和CPFD Software开发的BARRACUDA,并提供相关参数来模拟化学动力学和/或复制实验室数据。 C3M中的反应动力学数据由一种或多种详细的反应模型提供,例如PC Coal Lab(PCCL),煤脱挥发分的化学渗滤模型(CPD),Solomon.s官能团,解聚,汽化,交联(FGDVC) )模型,或通过NETL生成的实验数据。编写算法来创建此接口并从所有模型中提取动力学信息。此功能为CFD用户提供了进行虚拟动力学实验的框架,以根据燃料和吸附剂类型和/或运行条件评估动力学预测。大大减少了用户搜索,分析和检查感兴趣的动力学准确性的工作量。通过在(2-D)运输气化炉和工业GE Texaco气化炉模型(1-D)中实施C3M动力学,测试了C3M动力学的有效性和兼容性。预测的出口气体成分和气体种类趋势与实验和工业数据非常吻合。为了改善动力学数据库,完成了详细的煤/生物质烟灰文献综述。发现在高温和高压操作条件下,煤衍生的烟灰形成和气化动力学存在间隙。除了动力学研究之外,在CFD模型中还采用了不确定性量化(UQ)技术来研究煤气化炉中化学反应动力学的变化。基于输入参数(例如温度,压力,加热速率和煤进料组成)的变化实现了出口气体组成的不确定性。脱挥发分产物产量的变化(例如CO,CO2,H2,焦油,H2O和CH4的质量分数以及总挥发物产量)用作响应变量,并根据输入参数(例如温度,压力)的分布进行记录和关联和加热速率。通过计算相关矩阵,研究了响应变量和输入参数之间的相关性。输出响应的不确定性与文献报道的数据非常吻合。这项研究强烈建议在CFD建模中考虑化学反应动力学不确定性的重要性。

著录项

  • 作者

    Chaudhari, Kiran P.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Engineering Chemical.;Chemistry Physical.;Statistics.;Education Environmental.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号