首页> 外文会议>ASME turbo expo: turbine technical conference and exposition >COMPARATIVE ANALYSIS OF METHODOLOGIES FOR UNCERTAINTY PROPAGATION AND QUANTIFICATION
【24h】

COMPARATIVE ANALYSIS OF METHODOLOGIES FOR UNCERTAINTY PROPAGATION AND QUANTIFICATION

机译:不确定性传播和量化方法的比较分析

获取原文

摘要

In engineering design, uncertainty is inevitable and can cause a significant deviation in the performance of a system. Uncertainty in input parameters can be categorized into two groups: aleatory and epistemic uncertainty. The work presented here is focused on aleatory uncertainty, which can cause natural, unpredictable and uncontrollable variations in performance of the system under study. Such uncertainty can be quantified using statistical methods, but the main obstacle is often the computational cost, because the representative model is typically highly non-linear and complex. Therefore, it is necessary to have a robust tool that can perform the uncertainty propagation with as few evaluations as possible. In the last few years, different methodologies for uncertainty propagation and quantification have been proposed. The focus of this study is to evaluate four different methods to demonstrate strengths and weaknesses of each approach. The first method considered is Monte Carlo simulation, a sampling method that can give high accuracy but needs a relatively large computational effort. The second method is Polynomial Chaos, an approximated method where the probabilistic parameters of the response function are modelled with orthogonal polynomials. The third method considered is Mid-range Approximation Method. This approach is based on the assembly of multiple meta-models into one model to perform optimization under uncertainty. The fourth method is the application of the first two methods not directly to the model but to a response surface representing the model of the simulation, to decrease computational cost. All these methods have been applied to a set of analytical test functions and engineering test cases. Relevant aspects of the engineering design and analysis such as high number of stochastic variables and optimised design problem with and without stochastic design parameters were assessed. Polynomial Chaos emerges as the most promising methodology, and was then applied to a turbomachinery test case based on a thermal analysis of a high-pressure turbine disk.
机译:在工程设计中,不确定性是不可避免的,并且可能导致系统性能出现重大偏差。输入参数的不确定性可分为两类:偶然不确定性和认知不确定性。这里介绍的工作集中在偶然的不确定性上,这可能导致所研究系统的性能发生自然的,不可预测的和不可控制的变化。可以使用统计方法对这种不确定性进行量化,但主要障碍通常是计算成本,因为代表性模型通常高度非线性且复杂。因此,必须有一个强大的工具来执行不确定性传播,并进行尽可能少的评估。在最近几年中,已经提出了不确定性传播和量化的不同方法。这项研究的重点是评估四种不同的方法,以证明每种方法的优缺点。考虑的第一种方法是蒙特卡洛模拟,这是一种采样方法,可以提供高精度,但需要相对较大的计算量。第二种方法是多项式混沌,这是一种近似方法,其中使用正交多项式对响应函数的概率参数进行建模。所考虑的第三种方法是中程近似法。这种方法基于将多个元模型组装到一个模型中以在不确定性下执行优化。第四种方法是将前两种方法不直接应用于模型,而是应用于代表模拟模型的响应面,以降低计算成本。所有这些方法已应用于一组分析测试功能和工程测试案例。评估了工程设计和分析的相关方面,例如大量的随机变量和有无随机设计参数的优化设计问题。多项式混沌是最有前途的方法,后来被用于基于高压涡轮盘热分析的涡轮机械测试案例中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号