首页> 外文期刊>Chemical Reviews >Titanium Dioxide (Anatase and Rutile): Surface Chemistry, Liquid-Solid Interface Chemistry, and Scientific Synthesis of Supported Catalysts
【24h】

Titanium Dioxide (Anatase and Rutile): Surface Chemistry, Liquid-Solid Interface Chemistry, and Scientific Synthesis of Supported Catalysts

机译:二氧化钛(锐钛矿和金红石):表面化学,液固界面化学和负载型催化剂的科学合成

获取原文
           

摘要

Solid catalysts are very useful functional materials, which are used in 90% of industrial processes. The most important are the supported ones. In these catalysts, nanoparticles of an active element (metal, oxide, or sulfide) are dispersed on the surface of a carrier with high surface area. In most of the cases, the synthesis starts with the impregnation (immersion) of powder or preshaped bodies of a carrier with (inside) an electrolytic solution containing the precursor species of the active element to be deposited. The control of the impregnation step is, in effect, essential for preparing very active and selective catalysts. This control requires the understanding, at molecular level, of the deposition processes taking place at the interface developed between the carrier surface and the solution upon impregnation. The above can not be realized without the knowledge of the interface structure. Thus, interfacial chemistry can help toward a scientific synthesis of supported catalysts. On the other hand, the knowledge of the surface chemistry (surface science) of a solid used as a carrier is an essential prerequisite for understanding the relevant interfacial chemistry and then the fundamental deposition processes taking place upon impregnation. Thus, in view of the above requirement for a controlled synthesis of supported catalysts at molecular level, we realize that we need more chemistry to shift catalyst synthesis from the art to the science. We need three different disciplines to come in contact: surface chemistry, interface chemistry, and scientific synthesis of solid catalysts.
机译:固体催化剂是非常有用的功能材料,在90%的工业过程中都使用。最重要的是受支持的。在这些催化剂中,活性元素(金属,氧化物或硫化物)的纳米颗粒分散在具有高表面积的载体表面上。在大多数情况下,合成始于将载体的粉末或预成型体用(内部)包含要沉积的活性元素的前体物质的电解液浸渍(浸渍)。实际上,浸渍步骤的控制对于制备非常活性和选择性的催化剂是必不可少的。这种控制需要在分子水平上理解在浸渍时在载体表面和溶液之间形成的界面上发生的沉积过程。没有接口结构的知识就无法实现上述目的。因此,界面化学可以帮助科学合成负载型催化剂。另一方面,对于用作载体的固体的表面化学(表面科学)的了解是理解相关的界面化学以及随后在浸渍时发生的基本沉积过程的必要前提。因此,鉴于以上对在分子水平上控制合成负载型催化剂的要求,我们意识到我们需要更多的化学方法以将催化剂的合成从现有技术转移到科学领域。我们需要联系三个不同的学科:表面化学,界面化学和固体催化剂的科学合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号