...
首页> 外文期刊>Plasma Sources Science & Technology >Time-resolved electron density and electron temperature measurements in nanosecond pulse discharges in helium
【24h】

Time-resolved electron density and electron temperature measurements in nanosecond pulse discharges in helium

机译:氦中纳秒级脉冲放电的时间分辨电子密度和电子温度测量

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Thomson scattering is used to study temporal evolution of electron density and electron temperature in nanosecond pulse discharges in helium sustained in two different configurations, (i) diffuse filament discharge between two spherical electrodes, and (ii) surface discharge over plane quartz surface. In the diffuse filament discharge, the experimental results are compared with the predictions of a 2D plasma fluid model. Electron densities are put on an absolute scale using pure rotational Raman spectra in nitrogen, taken without the plasma, for calibration. In the diffuse filament discharge, electron density and electron temperature increase rapidly after breakdown, peaking at n(e) approximate to 3.5 . 10(15) cm(-3) and T-e approximate to 4.0 eV. After the primary discharge pulse, both electron density and electron temperature decrease (to n(e) similar to 10(14) cm(-3) over similar to 1 mu s and to T-e similar to 0.5 eV over similar to 200 ns), with a brief transient rise produced by the secondary discharge pulse. At the present conditions, the dominant recombination mechanism is dissociative recombination of electrons with molecular ions, He-2(+). In the afterglow, the electron temperature does not relax to gas temperature, due to superelastic collisions. Electron energy distribution functions (EEDFs) inferred from the Thomson scattering spectra are nearly Maxwellian, which is expected at high ionization fractions, when the shape of EEDF is controlled primarily by electron-electron collisions. The kinetic model predictions agree well with the temporal trends detected in the experiment, although peak electron temperature and electron density are overpredicted. Heavy species temperature predicted during the discharge and the early afterglow remains low and does not exceed T = 400 K, due to relatively slow quenching of metastable He* atoms in two-body and three-body processes. In the surface discharge, peak electron density and electron temperature are n(e) approximate to 3 . 10(14) cm(-3) and T-e approximate to 4.25 eV, attained after the surface ionization wave reaches the grounded electrode. The sensitivity of the present diagnostics is too low to measure electron density in the plasma during surface ionization wave propagation (estimated to be below n(e) approximate to 10(13) cm(-3)). After peaking during the primary current pulse, the electron density decays due to dissociative recombination. Electron temperature decreases rapidly over similar to 150 ns after the primary current pulse rise, to T-e approximate to 0.5 eV, followed by a much more gradual electron cooling between the primary and the secondary discharge pulses, due to superelastic collisions providing moderate electron heating in the afterglow.
机译:汤姆森散射用于研究氦在以两种不同构型维持的纳秒脉冲放电中电子密度和电子温度的时间演变,(i)两个球形电极之间的扩散灯丝放电,以及(ii)平面石英表面上的表面放电。在弥散灯丝放电中,将实验结果与二维等离子流体模型的预测结果进行比较。使用在氮气中的纯旋转拉曼光谱(无需等离子体采集),将电子密度按绝对比例设置,以进行校准。在扩散灯丝放电中,击穿后电子密度和电子温度迅速升高,在n(e)达到约3.5的峰值。 10(15)cm(-3)和T-e约为4.0 eV。在一次放电脉冲之后,电子密度和电子温度都下降(在类似于1 s s的时间内下降到类似于10(14)cm(-3)的n(e),在类似于200 ns的时间内下降到类似于0.5 eV的Te),次级放电脉冲会产生短暂的瞬态上升。在当前条件下,主要的重组机制是电子与分子离子He-2(+)的解离重组。在余辉中,由于超弹性碰撞,电子温度不会松弛到气体温度。从汤姆森散射光谱推断出的电子能量分布函数(EEDF)接近麦克斯韦(Maxwellian),当EEDF的形状主要由电子-电子碰撞控制时,可以在高电离分数下得到预期。动力学模型的预测与实验中检测到的时间趋势非常吻合,尽管峰值电子温度和电子密度被过度预测。由于在两体和三体过程中亚稳态He *原子的淬灭相对较慢,因此在放电和早期余辉期间预测的重物种温度仍然很低,并且不超过T = 400K。在表面放电中,峰值电子密度和电子温度为约3的n(e)。在表面电离波到达接地电极后达到10(14)cm(-3)和T-e约4.25 eV。本诊断程序的灵敏度太低,无法在表面电离波传播过程中测量等离子体中的电子密度(估计值低于n(e)约等于10(13)cm(-3))。在初级电流脉冲期间达到峰值后,电子密度由于解离重组而衰减。在初级电流脉冲上升后,电子温度在大约150 ns的时间内迅速下降,达到大约0.5 eV的Te,随后,由于超弹性碰撞,在初级和次级放电脉冲之间电子逐渐冷却,这导致电子温度升高。余辉。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号