...
首页> 外文期刊>Physics of plasmas >Modeling of feedback and rotation stabilization of the resistive wall mode in tokamaks
【24h】

Modeling of feedback and rotation stabilization of the resistive wall mode in tokamaks

机译:托卡马克电阻墙模式的反馈和旋转稳定建模

获取原文
获取原文并翻译 | 示例
           

摘要

Steady-state operation of the advanced tokamak reactor relies on maintaining plasma stability with respect to the resistive wall mode (RWM). Active magnetic feedback and plasma rotation are the two methods proposed and demonstrated for this purpose. A comprehensive modeling effort including both magnetic feedback and plasma rotation is needed for understanding the physical mechanisms of the stabilization and to project to future devices. For plasma with low rotation, a complete solution for the feedback issue is obtained by assuming the plasma obeys ideal magnetohydrodynamics (MHDs) and utilizing a normal mode approach (NMA) [M. S. Chu , Nucl. Fusion 43, 441 (2003)]. It is found that poloidal sensors are more effective than radial sensors and coils inside of the vacuum vessel more effective than outside. For plasmas with non-negligible rotation, a comprehensive linear nonideal MHD code, the MARS-F has been found to be suitable. MARS-F [Y. Q. Liu , Phys. Plasmas 7, 3681 (2000)] has been benchmarked in the ideal MHD limit against the NMA. The effect of rotation stabilization of the plasma depends on the plasma dissipation model. Broad qualitative features of the experiment are reproduced. Rotation reduces the feedback gain required for RWM stabilization. Reduction is significant when rotation is near the critical rotation speed needed for stabilization. The International Thermonuclear Experimental Reactor (ITER) [R. Aymar , Plasma Phys. Controlled Fusion 44, 519 (2002)] (scenario IV for advanced tokamak operation) may be feedback stabilized with beta above the no wall limit and up to an increment of similar to50% towards the ideal limit. Rotation further improves the stability. (C) 2004 American Institute of Physics.
机译:先进托卡马克反应器的稳态运行依赖于相对于电阻壁模式(RWM)维持等离子体稳定性。主动磁反馈和等离子体旋转是为此目的提出和证明的两种方法。需要全面的建模工作,包括磁反馈和等离子体旋转,以了解稳定的物理机制并投影到未来的设备。对于低转速的等离子体,通过假设等离子体遵循理想的磁流体动力学(MHD)并利用正常模式方法(NMA)[M,可以获得反馈问题的完整解决方案。朱Chu Fusion 43,441(2003)]。发现极向传感器比径向传感器更有效,真空容器内部的线圈比外部更有效。对于旋转不可忽略的等离子,综合线性非理想MHD编码,MARS-F已被发现是合适的。 MARS-F [Y.刘琼Plasmas 7,3681(2000)]已针对NMA在理想的MHD限值中进行了基准测试。等离子体旋转稳定的效果取决于等离子体耗散模型。复制了实验的广泛定性特征。旋转会降低RWM稳定所需的反馈增益。当旋转接近稳定所需的临界转速时,减速效果显着。国际热核实验反应堆(ITER)[R.等离子物理受控制的Fusion 44,519(2002)](高级托卡马克操作的情景IV)可以通过无壁限值以上的beta向上反馈稳定化,直到达到理想限值为止的增量高达50%。旋转进一步提高了稳定性。 (C)2004美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号