首页> 外文会议>Conference on Plasma Physics >Poloidal and toroidal plasma rotation and resistive wall modes in tokamaks
【24h】

Poloidal and toroidal plasma rotation and resistive wall modes in tokamaks

机译:Tokamaks中的面色和环形等离子体旋转和电阻壁模式

获取原文

摘要

Contrary to wide spread belief, determination of the frequencies and growth rates of MHD waves and instabilities in rotating plasmas does not require non-self adjoint operators. The physics involves the generalized force operator and the Doppler-Coriolis shift operator, which are both self-adjoint, but they occur in a quadratic eigenvalue problem [1] with complex eigenvalues. Enclosing the system with a resistive wall yields a cubic eigenvalue problem [2], where the dissipation of the wall permits the additional class of resistive wall modes. Since these modes grow on a much longer time scale than the ideal MHD ones, they may be feedback stabilized [3], To accomplish that', knowledge of the full spectrum of modes of the system is essential. A general method to achieve this for the quadratic (ideal) eigenvalue problem has been developed recently by constructing the solution paths in the complex ω-plane [4]. These are obtained by taking away the outer boundary and solving the open boundary value problem, but restricting the solutions to have no energy flow into or out of the system. This yields curves in the complex plane on which the eigenvalues must be situated. They are determined by imposing the missing boundary condition. Here, the method is generalized to the cubic (dissipative) eigenvalue problem by accounting for the energy dissipation in the resistive wall. The obtained topologies of the solution paths yield important new insights into the. coupling of the resistive wall modes with the co- and counter-rotating external kink modes. Stability regimes obtained depend on the details of the profiles of the safety factor q, the toroidal velocity vψ, the poloidal velocity v_p, the wall position and the dissipative time scale tD of the wall.
机译:与广泛的传播信念相反,确定MHD波浪的频率和生长速率以及在旋转等离子体中的不置于的稳定性不需要非自动伴随运营商。物理学涉及广义力运营商和多普勒 - 科里奥利换档操作员,它们都是自相伴随的,但它们在具有复杂的特征值的二次特征值问题[1]中发生。用电阻壁封闭系统产生了立方特征值问题[2],其中壁的耗散允许另外的电阻壁模式。由于这些模式在更长的时间刻度上增长而不是理想的MHD,因此它们可能是反馈稳定[3],实现“,了解系统的全谱的知识至关重要。最近通过构造复杂ω平面[4]中的解决方案路径来开发用于实现二次(理想)特征值问题的一般方法。这些是通过脱离外边界并解决开放边界值问题而获得的,但限制了溶液,以没有能量流入或从系统中流出。这在复杂的平面中产生曲线,因此必须位于特征值。它们是通过强加缺失的边界条件来确定的。这里,该方法通过算用于电阻壁的能量耗散来推广到立方(耗散)特征值问题。获得的解决方案路径的拓扑产生了重要的新见解。耦合与同向和反向旋转的外部扭结模式电阻壁模式。获得的稳定性制度取决于安全因子Q,环形速度V∞,壁的壁位置和耗散时间尺度Td的皮肤速度Vψ的细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号