...
首页> 外文期刊>Physics of plasmas >A nonlinear two-fluid model for toroidal plasmas
【24h】

A nonlinear two-fluid model for toroidal plasmas

机译:环形等离子体的非线性双流体模型

获取原文
获取原文并翻译 | 示例

摘要

A nonlinear numerical model for the two-fluid (electron and ion fluid) description of the evolution of a plasma in toroidal geometry, MH3D-T, is described. The model extends the "drift" ordering for small perturbations to arbitrary perturbation size. It is similar, but not identical, to the collisional Braginskii equations. The ion gyroviscous stress tensor, Hall terms, temperature diamagnetic drifts, and a separate electron pressure evolution are included. The model stresses the (fluid) parallel dynamics by solving the density evolution together with the temperature equations, including the thermal equilibration along the magnetic field. It includes the neoclassical, collisional parallel viscous forces for electrons and ions. The model has been benchmarked against the stabilizing effects of the ion diamagnetic drift omega (*i) on the m=1, n=1 reconnecting mode in a cylinder. The stabilization mechanism is shown to be poloidal rotation of the global kink flow of the plasma mass v(i) within q <1, relative to the location of the magnetic field X-point within the reconnection layer. The ion omega (*i)-drift is also shown to cause frequency-splitting for the toroidal Alfven eigenmode (TAE). Basic diamagnetic and neoclassical magnetohydrodynamic (MHD) effects on magnetic island evolution and rotation are discussed. The dynamics of the plasma along the magnetic field, when compressibility, parallel thermal conductivity, plasma density evolution, and full toroidal geometry are kept, are found to have strong effects on both linear growth rates and nonlinear evolution. The nonlinear coupling of magnetic islands, driven by perturbations of different toroidal mode number, is enhanced by the density evolution in both MHD and two-fluids. (C) 2000 American Institute of Physics. [S1070-664X(00)05310-6]. [References: 60]
机译:描述了用于环形几何体中等离子体演化的双流体(电子和离子流体)描述的非线性数值模型MH3D-T。该模型将小扰动的“漂移”顺序扩展到任意扰动大小。它与碰撞的Braginskii方程相似但不相同。包括离子陀螺粘性张量,霍尔项,温度抗磁性漂移和单独的电子压力演变。该模型通过求解密度演化以及温度方程(包括沿磁场的热平衡)来强调(流体)平行动力学。它包括电子和离子的新古典碰撞平行粘性力。该模型已针对离子反磁性漂移ω(* i)对圆柱中m = 1,n = 1的重新连接模式的稳定作用进行了基准测试。相对于重连层内磁场X点的位置,稳定机制显示为等离子质量v(i)在q <1内的整体扭结流的极向旋转。还显示了离子ω(* i)漂移会导致环形Alfven本征模(TAE)发生频率分裂。讨论了基本的反磁和新古典磁流体动力学(MHD)对磁岛演化和旋转的影响。当保持可压缩性,平行热导率,等离子体密度演化和完整的环形几何形状时,等离子体沿磁场的动力学对线性增长率和非线性演化都具有强烈影响。磁岛的非线性耦合是由不同环模数的扰动驱动的,而MHD和双流体中的密度演化则增强了耦合。 (C)2000美国物理研究所。 [S1070-664X(00)05310-6]。 [参考:60]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号