首页> 外文期刊>Physics of fluids >Investigation of simplified thermal expansion models for compressible Newtonian fluids applied to nonisothermal plane Couette and Poiseuille flows
【24h】

Investigation of simplified thermal expansion models for compressible Newtonian fluids applied to nonisothermal plane Couette and Poiseuille flows

机译:适用于非等温平面库埃特和泊瓦斯流的可压缩牛顿流体简化热膨胀模型的研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper six different theories of a Newtonian viscous fluid are investigated and compared, namely, the theory of a compressible Newtonian fluid, and five constitutive limits of this theory: the incompressible theory, the limit where density changes only due to changes in temperature, the limit where density changes only with changes in entropy, the limit where pressure is a function only of temperature, and the limit of pressure a function only of entropy. The six theories are compared through their ability to model two test problems: (i) steady flow between moving parallel isothermal planes separated by a fixed distance with no pressure gradient in the flow direction, and (ii) steady flow between stationary isothermal parallel planes with a pressure gradient. The incompressible theory admits solutions to these problems of the plane Couette/Poiseuille flow form: a single nonzero velocity component in a direction parallel to the bounding planes, and velocity and temperature varying only in the direction perpendicular to the planes. The compressible theory admits a solution of this special form to problem (i) but not problem (ii). We find that the other four constitutive limits have Couette-form solutions to (i), but only the limits of density a function of temperature and pressure a function of entropy join the incompressible fluid in admitting the Poiseuille-form solutions to (ii); the limits of density a function only of entropy and pressure a function of temperature, as with the compressible theory, do not have solutions of that form. Based on the predictions of the fully compressible theory and its limits, we assess the usefulness of the limits as simplified models of thermal expansion. (C) 2004 American Institute of Physics.
机译:本文研究并比较了牛顿粘性流体的六种不同理论,即可压缩牛顿流体的理论,以及该理论的五个本构极限:不可压缩理论,其中密度仅因温度变化而变化的极限,密度仅随熵的变化而变化的极限,压力仅随温度的函数变化的极限以及压力仅随熵的函数变化的极限。通过对两种理论进行建模的能力对这六个理论进行了比较:(i)在流动方向上相隔固定距离的平行平行等温平面之间的稳定流动,且在流动方向上没有压力梯度;以及压力梯度。不可压缩理论允许解决平面库埃特/泊瓦流形式的这些问题的解决方案:在与边界平面平行的方向上存在单个非零速度分量,而速度和温度仅在与平面垂直的方向上变化。可压缩理论允许采用这种特殊形式的解决方案来解决问题(i),但不能解决问题(ii)。我们发现其他四个本构极限具有(i)的库埃特形式解,但只有密度的极限(温度和压力的函数,熵的函数)才使不可压缩的流体加入Poiseuille形式的解(ii);与可压缩理论一样,密度极限仅是熵的函数,压力极限是温度的函数,没有这种形式的解。基于完全可压缩理论及其极限的预测,我们评估极限作为热膨胀简化模型的有用性。 (C)2004美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号