首页> 外文期刊>Chemical engineering journal >Carbonation and deactivation kinetics of a mixed calcium oxide-copper oxide sorbent/oxygen carrier for post-combustion carbon dioxide capture
【24h】

Carbonation and deactivation kinetics of a mixed calcium oxide-copper oxide sorbent/oxygen carrier for post-combustion carbon dioxide capture

机译:用于燃烧后二氧化碳捕集的混合氧化钙/氧化铜吸附剂/氧气载体的碳化和失活动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Removing carbon dioxide from industrial effluents via solid carbonate sorbents is a potential greenhouse gas mitigation strategy that can also produce hydrogen from the effluent in water gas shift reactors downstream. However, to regenerate the calcium oxide (from the carbonate) requires high temperature that is provided via an oxidation step. To avoid costly oxycombustion to regenerate the CaCO3, it is possible to use the heat generated during the reduction of copper oxide and manganese oxides as chemical looping agents. Unfortunately, sorbents sinter thereby and consequently the surface area drops in the regeneration step. A mixed CuO-CaO sorbent with 10% calcium aluminate binder lost 84% of its initial BET surface area during the first 100 min on stream. Homogeneous calcium-copper-cement oxide sorbent deactivate to the 0.5 order with respect to the remaining surface area and a decay constant equal to 2.86 min(-1). An empirical equilibrium power law model characterizes the carbonation rate from 425 degrees C to 665 degrees C with 10% to 20% CO2 in a 45 mm fixed bed. The apparent activation energies of the forward and reverse reaction are 220 and 120 kJ mol(-1), respectively. In addition to sintering, the reaction rate of the regeneration step decreases with time on stream following a zero order process. We attributed this gradual irreversibility to increased crystallinity, reducing the diffusion rate of CO2 to the active carbonate phase. By integrating this resistance to the kinetic model, we are able to explain 99% of the variance in the gas profiles measured by a mass spectrometer. (C) 2016 Elsevier B.V. All rights reserved.
机译:通过固体碳酸盐吸附剂从工业废水中去除二氧化碳是一种潜在的温室气体减排策略,该策略还可在下游水煤气变换反应器中从废水中产生氢气。但是,要再生氧化钙(由碳酸盐),需要通过氧化步骤提供的高温。为了避免昂贵的氧燃烧以再生CaCO3,可以将氧化铜和氧化锰还原过​​程中产生的热量用作化学成环剂。不幸的是,吸附剂由此烧结,因此表面积在再生步骤中下降。在运行的前100分钟内,含10%铝酸钙粘合剂的混合CuO-CaO吸附剂损失了其初始BET表面积的84%。均相钙铜水泥氧化物吸附剂相对于剩余表面积失活至0.5级,衰减常数等于2.86 min(-1)。一个经验均衡功率定律模型描述了在45毫米固定床中425°C至665°C的碳酸化速率,其中CO2为10%至20%。正向和反向反应的表观活化能分别为220和120 kJ mol(-1)。除了烧结之外,在零级工艺之后,再生步骤的反应速率也会随着生产时间的延长而降低。我们将这种逐渐的不可逆性归因于结晶度的增加,从而降低了二氧化碳向活性碳酸盐相的扩散速度。通过将该阻力积分到动力学模型中,我们能够解释质谱仪测量的气体分布中99%的变化。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号