首页> 外文期刊>Applied Energy >Computational fluid dynamics of sulfur dioxide and carbon dioxide capture using mixed feeding of calcium carbonate/calcium oxide in an industrial scale circulating fluidized bed boiler
【24h】

Computational fluid dynamics of sulfur dioxide and carbon dioxide capture using mixed feeding of calcium carbonate/calcium oxide in an industrial scale circulating fluidized bed boiler

机译:在工业规模循环流化床锅炉中使用碳酸钙/氧化钙混合进料的二氧化硫和二氧化碳捕集的计算流体动力学

获取原文
获取原文并翻译 | 示例
       

摘要

The sulfur dioxide (SO2) and carbon dioxide (CO2) emissions from fuel combustion in a coal-fired power plant constitute a significant source of damage to the environment. Therefore, SO2 and CO2 should be captured before being released into the atmosphere. However, the competitiveness between SO2 and CO2 for calcium carbonate (CaCO3)/calcium oxide (CaO) solid sorbents is still unclear. In this study, unsteady state computational fluid dynamics simulation in a riser of an industrial scale circulating fluidized bed boiler integrated with heterogeneous combustion, carbonation, calcination, and desulfurization reactions using a mixed feeding of CaCO3/CaO solid sorbents was developed in a two-dimensional model to investigate the competition between SO2 and CO2 capture. Then, the effect of three operating variables, the mixed solid CaCO3/CaO sorbent particle size, feed position, and the proportion of inlet fuel velocity on the SO2 and CO2 capture were evaluated using a 23 factorial experimental design. The CaCO3/CaO solid sorbent particle size had a significant effect on the SO2 capture, while the interaction between CaCO3/CaO solid sorbent particle size and feed position had a significant effect on the CO2 capture. The reaction rate for CO2 capture was higher than that for SO2 capture. For SO2 capture, CaO reacted with SO2 faster than CaCO3 while, for CO2 capture, solid sorbents had higher carbonation rate than calcination rate. In addition, the overall level of SO2 and CO2 capture with a mixed CaCO3/CaO solid sorbent feed was higher than those with the conventional CaO solid sorbent.
机译:燃煤电厂燃料燃烧产生的二氧化硫(SO2)和二氧化碳(CO2)排放是对环境造成破坏的重要根源。因此,在将SO2和CO2释放到大气之前,应先对其进行捕获。但是,对于碳酸钙(CaCO3)/氧化钙(CaO)固体吸附剂,SO2和CO2之间的竞争力仍然不清楚。在这项研究中,二维地开发了工业规模循环流化床锅炉的立管中的非稳态计算流体动力学模拟,该锅炉集成了使用混合进料的CaCO3 / CaO固体吸附剂的非均质燃烧,碳化,煅烧和脱硫反应模型研究SO2和CO2捕集之间的竞争。然后,使用23因子实验设计评估了三个操作变量(混合的固体CaCO3 / CaO吸附剂粒径,进料位置以及入口燃料速度的比例)对SO2和CO2捕集的影响。 CaCO3 / CaO固体吸附剂粒径对SO2的捕集有显着影响,而CaCO3 / CaO固体吸附剂粒径与进料位置之间的相互作用对CO2的捕集有显着影响。捕获CO 2的反应速率高于捕获SO 2的反应速率。对于SO2捕获,CaO与SO2的反应要比CaCO3快,而对于CO2捕获,固体吸附剂的碳酸化率要高于煅烧率。此外,混合的CaCO3 / CaO固体吸附剂进料的总SO2和CO2捕集水平高于常规CaO固体吸附剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号