首页> 外文学位 >High temperature reactive separation process for combined carbon dioxide and sulfur dioxide capture from flue gas and enhanced hydrogen production with in-situ carbon dioxide capture using high reactivity calcium and biomineral sorbents.
【24h】

High temperature reactive separation process for combined carbon dioxide and sulfur dioxide capture from flue gas and enhanced hydrogen production with in-situ carbon dioxide capture using high reactivity calcium and biomineral sorbents.

机译:高温反应分离工艺,用于从烟道气中捕获二氧化碳和二氧化硫,并使用高反应性钙和生物矿物吸附剂进行原位捕获,从而提高了制氢量。

获取原文
获取原文并翻译 | 示例

摘要

The increasing use of fossil fuels to meet the rising energy demands has led to higher CO2 emissions in the atmosphere. CO2 is the most significant greenhouse gas leading to global warming. Hence, recent emphasis on curbing of global warming is leading to the development of new cost effective technologies for CO2 management. Typically, the overall CO2 management scheme consists of three main areas---separation, transportation and sequestration. The cost of CO2 separation is projected to be as high as 75% of the entire cost of the CO2 sequestration. This corresponds to an increase in the cost of electricity production by about 50-200%. Current low temperature and high pressure CO2 separation technologies impose severe energy penalties and hence an increased cost for CO2 capture. However, the flue gases are present at high temperatures and sub atmospheric pressures. This proposed novel reactive separation technology: the carbonation-calcination reactions (CCR) of calcium oxides for CO 2 removal from flue gas operates at high temperatures, thereby eliminating the energy penalties. Calcium oxide reacts with CO2 to form calcium carbonate, which is then regenerated by calcining to give back the oxide and a pure CO2 stream. These gas phase carbonation reactions occur over a wide range of temperatures and pressures, including those present in the flue gas.; The CCR process employing calcium oxide fines (1-50 microns) is energy efficient but faces engineering challenges for commercial deployment due to particle separation issues. Chicken eggshell, a bioceramic composite rich in calcium, offers a unique combination of particle strength, reactivity and cost. This study demonstrates that chemically treated refuse eggshells attain a CO2 capture capacity as high as 65 wt% at 700 °C. A unique dilute acetic acid treatment procedure, which enhances its reactivity, is optimized to physically detach the organic membrane from the eggshell composite. These membranes, rich in collagen, have market value and find use in several biomaterial applications including skin grafting. In addition, the study reveals that intermediate hydration of calcined eggshell sustains its multicyclic reactivity by generating higher porosity structure which enable better gas accessibility throughout the eggshell depth. Eggshells overcome the engineering challenges confronting the deployment of fines based CCR process. Naturally occurring eggshells thus obviate the necessity to formulate expensive agglomerates from high reactivity calcium fines thereby making the process economical. (Abstract shortened by UMI.)
机译:为了满足不断增长的能源需求,越来越多地使用化石燃料导致大气中二氧化碳排放量增加。二氧化碳是导致全球变暖的最重要的温室气体。因此,近来对遏制全球变暖的重视导致了用于二氧化碳管理的新的具有成本效益的技术的发展。通常,总体的二氧化碳管理方案包括三个主要领域:分离,运输和封存。分离二氧化碳的成本预计将高达二氧化碳封存总成本的75%。这对应于电力生产成本增加了约50-200%。当前的低温和高压CO 2分离技术施加了严厉的能量损失,因此增加了CO 2捕集的成本。但是,烟道气存在于高温和低于大气压的环境中。这项提出的新型反应分离技术:用于从烟气中去除CO 2的氧化钙的碳化煅烧反应(CCR)在高温下进行,从而消除了能源消耗。氧化钙与CO2反应形成碳酸钙,然后通过煅烧使其再生,以返回氧化物和纯净的CO2流。这些气相碳酸化反应在很宽的温度和压力范围内发生,包括烟道气中存在的温度和压力。使用氧化钙细粉(1-50微米)的CCR工艺具有能源效率,但由于颗粒分离问题,在商业应用方面面临工程挑战。鸡蛋壳是一种富含钙的生物陶瓷复合材料,具有颗粒强度,反应性和成本的独特组合。这项研究表明,化学处理过的垃圾蛋壳在700°C时的CO2捕集能力高达65 wt%。优化了独特的稀乙酸处理程序,可增强其反应性,可将有机膜与蛋壳复合物物理分离。这些富含胶原蛋白的膜具有市场价值,可用于包括皮肤移植在内的多种生物材料应用。此外,研究表明,煅烧蛋壳的中间水合通过产生更高的孔隙率结构来维持其多环反应性,从而在整个蛋壳深度提供更好的气体可及性。蛋壳克服了基于罚款的CCR流程部署面临的工程挑战。因此,天然存在的蛋壳消除了由高反应性钙粉配制昂贵的附聚物的必要性,从而使该方法经济。 (摘要由UMI缩短。)

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号