首页> 外文期刊>Physica, E. Low-dimensional systems & nanostructures >Effects of simultaneous doping with boron and phosphorous on the structural, electronic and optical properties of silicon nanostructures
【24h】

Effects of simultaneous doping with boron and phosphorous on the structural, electronic and optical properties of silicon nanostructures

机译:同时掺杂硼和磷对硅纳米结构的结构,电子和光学性质的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We show, by means of ab-initio calculations, that by properly controlling the doping a significant modification of both the absorption and the emission of light of silicon nanocrystals can be achieved. We have considered impurities, boron and phosphorous (codoping), located at different substitutional sites of silicon nanocrystals with size ranging from 1.1 to 1.8 nm in diameter. We have found that the codoped nanocrystals have the lowest impurity formation energies when the two impurities Occupy nearest neighbour sites near the surface. In addition, such systems present band-edge states localized on the impurities giving rise to a red-shift of the absorption thresholds with respect to that of undoped nanocrystals. Our detailed theoretical analysis shows that the creation of in electron-hole pair due to light absorption determines a geometry distortion that in turn results in a Stokes shift between absorption and emission spectra. In order to give a deeper insight in this effect, in one case, we have calculated the absorption and emission spectra going beyond the single-particle approach showing the important role played by many-body effects. Moreover, we also investigate how the properties of the codoped nanoclusters are influenced by the insertion of more impurities (multidoping). Finally, we have studied the effect of B and P codoping on the electronic and optical properties of Si nanowires, thus investigating the role of dimensionality. The entire set of results we have collected in this work give a strong indication that with the doping it is possible to tone the optical properties of silicon nanostructures.
机译:我们显示了通过从头算的方法,通过适当地控制掺杂,可以实现硅纳米晶体的光的吸收和发射的显着改变。我们已经考虑了杂质,硼和磷(共掺杂),它们位于硅纳米晶体的不同取代位,直径范围为1.1至1.8 nm。我们已经发现,当两种杂质占据表面附近的最近邻居时,共掺杂纳米晶体具有最低的杂质形成能。另外,这样的系统呈现出位于杂质上的带边缘状态,这导致吸收阈值相对于未掺杂的纳米晶体的红移。我们详细的理论分析表明,由于光吸收而形成的电子-空穴对决定了几何畸变,进而导致吸收光谱和发射光谱之间的斯托克斯位移。为了更深入地了解这种效应,在一种情况下,我们已经计算出吸收和发射光谱超出了单粒子方法,显示了多体效应所起的重要作用。此外,我们还研究了共掺杂纳米团簇的性质如何受到更多杂质(多掺杂)的插入的影响。最后,我们研究了B和P共掺杂对Si纳米线的电子和光学性质的影响,从而研究了尺寸的作用。我们在这项工作中收集到的所有结果都强烈表明,通过掺杂,可以改变硅纳米结构的光学特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号