首页> 外文期刊>World Wide Web >An empirical study on user-topic rating based collaborative filtering methods
【24h】

An empirical study on user-topic rating based collaborative filtering methods

机译:基于用户主题评级的协同过滤方法的实证研究

获取原文
获取原文并翻译 | 示例

摘要

User based collaborative filtering (CF) has been successfully applied into recommender system for years. The main idea of user based CF is to discover communities of users sharing similar interests, thus, in which, the measurement of user similarity is the foundation of CF. However, existing user based CF methods suffer from data sparsity, which means the user-item matrix is often too sparse to get ideal outcome in recommender systems. One possible way to alleviate this problem is to bring new data sources into user based CF. Thanks to the rapid development of social annotation systems, we turn to using tags as new sources. In these approaches, user-topic rating based CF is proposed to extract topics from tags using different topic model methods, based on which we compute the similarities between users by measuring their preferences on topics. In this paper, we conduct comparisons between three user-topic rating based CF methods, using PLSA, Hierarchical Clustering and LDA. All these three methods calculate user-topic preferences according to their ratings of items and topic weights. We conduct the experiments using the MovieLens dataset. The experimental results show that LDA based user-topic rating CF and Hierarchical Clustering outperforms the traditional user based CF in recommending accuracy, while the PLSA based user-topic rating CF performs worse than the traditional user based CF.
机译:基于用户的协作过滤(CF)已经成功地应用于推荐系统。基于用户的CF的主要思想是发现拥有相似兴趣的用户社区,因此,用户相似性的度量是CF的基础。但是,现有的基于用户的CF方法存在数据稀疏性,这意味着用户项目矩阵通常太稀疏,无法在推荐系统中获得理想的结果。缓解此问题的一种可能方法是将新的数据源引入基于用户的CF中。由于社会注释系统的迅速发展,我们转向使用标签作为新资源。在这些方法中,提出了基于用户主题评分的CF,以使用不同的主题模型方法从标签中提取主题,在此基础上,我们通过测量用户对主题的偏好来计算用户之间的相似度。在本文中,我们使用PLSA,分层聚类和LDA对三种基于用户主题评级的CF方法进行了比较。所有这三种方法都根据用户对项目的评价和主题权重来计算他们对主题的偏好。我们使用MovieLens数据集进行实验。实验结果表明,基于LDA的用户主题评级CF和层次聚类在推荐准确度方面优于传统的基于用户的CF,而基于PLSA的用户主题评级CF的性能要优于传统的基于用户CF。

著录项

  • 来源
    《World Wide Web》 |2017年第4期|815-829|共15页
  • 作者单位

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210093, Jiangsu, Peoples R China;

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210093, Jiangsu, Peoples R China;

    Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210093, Jiangsu, Peoples R China;

    Univ Queensland, Sch Informat Technol & Elect Engn, St Lucia, Qld 4072, Australia;

    Univ Queensland, Sch Informat Technol & Elect Engn, St Lucia, Qld 4072, Australia;

    Univ Queensland, Sch Informat Technol & Elect Engn, St Lucia, Qld 4072, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommender systems; Collaborative filtering; PLSA; Hierarchical clustering; LDA;

    机译:推荐系统;协同过滤;PLSA;层次聚类;LDA;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号