首页> 外文期刊>Wireless Networks >Nature-inspired meta-heuristics approaches for charging plug-in hybrid electric vehicle
【24h】

Nature-inspired meta-heuristics approaches for charging plug-in hybrid electric vehicle

机译:充电插件混合动力汽车的自然灵感荟萃启发式方法

获取原文
获取原文并翻译 | 示例

摘要

Currently, there is a remarkable focus on green technologies for taking steps towards more use of renewable energy sources within the sector of transportation and also decreasing pollution. At this point, employment of plug-in hybrid electric vehicles (PHEVs) needs sufficient charging allocation strategy, by running smart charging infrastructures and smart grid systems. In order to daily usage of PHEVs, daytime charging stations are required and at this point, only an appropriate charging control and a management of the infrastructure can lead to wider employment of PHEVs. In this study, four swarm intelligence based optimization techniques: particle swarm optimization (PSO), gravitational search algorithm (GSA), accelerated particle swarm optimization, and hybrid version of PSO and GSA (PSOGSA) have been applied for the state-of-charge optimization of PHEVs. In this research, hybrid PSOGSA has performed very well in producing better results than other stand-alone optimization techniques.
机译:目前,在运输部门内更多使用可再生能源的措施以及降低污染的措施,有一种显着的重点。此时,通过运行智能充电基础设施和智能电网系统,采用插件混合动力电动车(PHEV)的采用电动汽车(PHEV)需要充分的充电分配策略。为了每日使用PHEV,需要日间充电站,此时,只有适当的充电控制和基础设施的管理可能导致PHEV的更广泛就业。在本研究中,四种群体基于智能的优化技术:粒子群优化(PSO),引力搜索算法(GSA),加速粒子群优化和PSO和GSA(PSOGSA)的混合版本已被应用于充电状态PHEV的优化。在这项研究中,混合PSOGSA在产生比其他独立优化技术的效果更好的结果中表现得非常好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号