首页> 外文学位 >Impact of Observed Travel and Charging Behavior, Simulated Workplace Charging Infrastructure, and Vehicle Design on PHEV Utility Factors (UF), Total Charge Depleting (CD) Driving and Time of Day (TOD) Grid Demand: Scenarios Based on Consumers' Use of A Plug-in Hybrid Electric Vehicle (PHEV) Conversion.
【24h】

Impact of Observed Travel and Charging Behavior, Simulated Workplace Charging Infrastructure, and Vehicle Design on PHEV Utility Factors (UF), Total Charge Depleting (CD) Driving and Time of Day (TOD) Grid Demand: Scenarios Based on Consumers' Use of A Plug-in Hybrid Electric Vehicle (PHEV) Conversion.

机译:观察到的旅行和充电行为,模拟的工作场所充电基础设施以及车辆设计对PHEV实用因素(UF),总电量消耗(CD)行驶和一天中的时间(TOD)电网需求的影响:基于消费者使用插头的方案混合动力汽车(PHEV)的转换。

获取原文
获取原文并翻译 | 示例

摘要

Plug-in hybrid electric vehicles (PHEVs) can run on gasoline or grid electricity and have been widely touted as promising more future societal and environmental benefits than hybrid electric vehicles (HEVs). However, since the charging of PHEVs will place new loads on the electrical grid, how much and the time of day (TOD) at which users plug in their vehicles will have implications for electricity providers who must meet the additional electrical load required to charge a fleet of PHEVs. PHEV charging could place new burdens on existing electrical infrastructure (substations and transformers) and generating capacity. Information about consumers' charging behavior can help utilities and interested parties better plan for PHEVS in the marketplace. To date, analysts have made assumptions as to the design of PHEVs that will be purchased, and the travel and charging behavior of the future users. Furthermore, since PHEVs can run in charge depleting (CD) and charge sustaining (CS) modes there is uncertainty as to how much travel will be completed in each mode due to the variety of possible vehicle designs, access to charging infrastructure, and travel and charging behavior of PHEV users. Accounting for the amount of travel in each mode is crucial in order to accurately assess the fuel economy (FE) benefits, green house gas (GHG) emissions and costs of PHEVs. In 2001, the Society of Automotive Engineers (SAE) promulgated standard J2841 defining the utility factor (UF) as the percentage of travel that can be completed in CD mode for a PHEV fleet with a given CD range. As such, the SAE standard J2841 has a substantial influence on policies regarding PHEVs and their assumed benefits and costs, and has been used by analysts, industry, and policy makers to calculate PHEV corporate average fuel economy (CAFE), GHG emissions, operating costs and Zero Emission Vehicle (ZEV) credits. My analysis challenges J2841by calculating the observed UF for a fleet of PHEVs driven by 25 Plausible Early Market (PEM) PHEV buyers in a demonstration and market research project. To estimate the potential effects on the UF of additional recharging infrastructure, I model a workplace charging scenario in which each of the 25 households recharges the PHEV at their workplace as well as at home. Lastly, hypothetical consumer designed PHEVs, solicited from each PEM household, are used to create and compare future market scenarios in which consumers are offered a wide variety of makes and body styles of PHEVs---thus simulating a plausible future market in which a variety of PHEVs are offered for sale. The results suggest that promoting "short range" PHEVs and focusing on popular vehicle-types, rather than upon achieving high CD ranges, could lead to greater total benefits from PHEVs in the early market, through more widespread adoption of PHEVs.;Compared to SAE J2841, the observed UFs from the PEM demonstration data are 10 percentage points higher for PHEVs of up to 40 miles of CD range. At 40 miles CD range, J2841 stipulates a UF of 62%; I calculate a UF of 72% from the observed data. The increase in CD driving from adding simulated workplace charging varies by vehicle range, with the largest percentage point increases in CD driving occurring below 20 miles. Workplace charging changes the TOD distribution of power needed to charge a fleet of vehicles, producing a new maximum at 9:30am. The addition of workplace charging under the conditions modeled here does not change the evening peak power demand.
机译:插电式混合动力汽车(PHEV)可以使用汽油或电网电力运行,并且被广泛宣传为与混合动力汽车(HEV)相比,具有更大的未来社会和环境效益。但是,由于PHEV的充电会给电网带来新的负荷,因此用户插入车辆的时间和时间(TOD)将对必须满足充电所需的额外电力负荷的电力供应商产生影响。插电式混合动力车队。 PHEV充电可能给现有的电力基础设施(变电站和变压器)和发电量带来新的负担。有关消费者充电行为的信息可以帮助公用事业公司和有关方面更好地规划市场中的PHEVS。迄今为止,分析师已经对将要购买的插电式混合电动车的设计以及未来用户的出行和充电行为做出了假设。此外,由于PHEV可以在电量耗尽(CD)和电量维持(CS)模式下运行,由于各种可能的车辆设计,使用充电基础设施以及出行和出行,因此不确定每种模式下将完成多少行进PHEV用户的充电行为。为了准确评估燃油经济性(FE)收益,温室气体(GHG)排放和PHEV的成本,考虑每种模式下的行驶量至关重要。在2001年,汽车工程师协会(SAE)颁布了标准J2841,该标准将效用系数(UF)定义为具有给定CD范围的PHEV车队可以CD模式完成的行驶百分比。因此,SAE标准J2841对与PHEV有关的政策及其假定的收益和成本具有重大影响,并且已被分析人员,行业和政策制定者用来计算PHEV公司的平均燃料经济性(CAFE),GHG排放,运营成本和零排放车辆(ZEV)积分。我的分析通过在一个示范和市场研究项目中计算由25个可能的早期市场(PEM)PHEV购买者驱动的PHEV车队的观察到的UF,从而对J2841构成挑战。为了估算其他充电基础设施对超滤的潜在影响,我对工作场所充电方案进行了建模,其中25个家庭中的每个家庭都在其工作场所以及家庭中为PHEV充电。最后,从每个PEM家庭征求的假设消费者设计的插电式混合电动汽车用于创建和比较未来的市场情景,在该情景中,向消费者提供各种品牌和车身样式的插电式混合电动汽车,从而模拟了一个合理的未来市场。出售PHEV。结果表明,推广“短程”插电式混合动力汽车并专注于流行的车辆类型,而不是实现高CD续航里程,可以通过更广泛地采用PHEV电动汽车而在早期市场上从PHEV带来更大的总体收益。 J2841,从PEM演示数据中观察到的超滤膜,对于CD范围高达40英里的PHEV,要高出10个百分点。在CD距离40英里处,J2841规定超滤率为62%;我从观察到的数据计算出UF为72%。添加模拟工作场所充电所产生的CD驾驶增加量随车辆行驶距离而变化,其中CD驾驶增加最大百分比出现在20英里以下。工作场所充电改变了TOD分配给车队充电所需的功率,在上午9:30产生了新的最大值。在此处模拟的条件下增加工作场所充电不会改变晚上的峰值用电需求。

著录项

  • 作者

    Davies-Shawhyde, Jamie.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Alternative Energy.;Transportation.
  • 学位 M.S.
  • 年度 2011
  • 页码 66 p.
  • 总页数 66
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:56

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号