首页> 外文期刊>Wireless Networks >Urban noise mapping with a crowd sensing system
【24h】

Urban noise mapping with a crowd sensing system

机译:使用人群感应系统绘制城市噪声

获取原文
获取原文并翻译 | 示例

摘要

Noise pollution poses a serious threat to people living in cities today. To alleviate the negative impact of noise pollution, an urban noise mapping can be helpful. In this paper, we present the design of NoiseSense, a crowd sensing system for housing a real-time urban noise mapping service. A major challenge in building such a system is caused by the sparsity problem of the limited noise measurement data from smartphones. To tackle this challenge, we propose a hybrid approach including a neighborhood-based noise level estimation method and a semi-supervised tensor completion algorithm for inferring noise levels for locations without measurements by smartphone users. This approach leverages a variety of urban data sources, such as Point of Interests, road networks, and check-in data. We also provide a noise prediction method for forecasting the noise levels in the next few hours. We implemented the system and developed an APP for smartphone users. We conducted experiments and field study. The experimental results show that the proposed approach is superior in inferring noise levels merely with sparse measurements from smartphone users. And the prediction approach also outperforms other baseline methods.
机译:噪声污染对当今居住在城市中的人们构成了严重威胁。为了减轻噪声污染的负面影响,城市噪声分布图可能会有所帮助。在本文中,我们介绍了NoiseSense的设计,NoiseSense是一种用于提供实时城市噪声地图服务的人群感应系统。构建此类系统的主要挑战是由于来自智能手机的有限噪声测量数据的稀疏性问题。为了解决这一挑战,我们提出了一种混合方法,包括基于邻域的噪声水平估计方法和半监督张量完成算法,用于推断位置的噪声水平,而无需智能手机用户进行测量。这种方法利用了各种城市数据源,例如景点,道路网络和签到数据。我们还提供了一种噪声预测方法,用于预测接下来几个小时内的噪声水平。我们实施了该系统并为智能手机用户开发了一个APP。我们进行了实验和现场研究。实验结果表明,仅从智能手机用户进行稀疏测量时,所提出的方法在推断噪声水平方面具有优势。并且预测方法也优于其他基准方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号