首页> 外文期刊>Wireless Communications Letters, IEEE >Online Learning Enabled Task Offloading for Vehicular Edge Computing
【24h】

Online Learning Enabled Task Offloading for Vehicular Edge Computing

机译:在线学习支持车辆边缘计算的任务卸载

获取原文
获取原文并翻译 | 示例

摘要

Vehicular edge computing pushes the cloud computing capability to the distributed network edge nodes, enabling computation-intensive and latency-sensitive computing services for smart vehicles through task offloading. However, the inherent mobility introduces fast variation of network structure, which are usually unknown a priori. In this letter, we formulate the vehicular task offloading as a mortal multi-armed bandit problem, and develop a new online algorithm to enable distributed decision making on the node selection. The key is to exploit the contextual information of edge nodes and transform the infinite exploration space to a finite one. Theoretically, we prove that the proposed algorithm has a sublinear learning regret. Simulation results verify its effectiveness.
机译:车辆边缘计算将云计算能力推向分布式网络边缘节点,通过任务卸载使智能车辆的计算密集型和延迟敏感的计算服务。然而,固有的移动性引入了网络结构的快速变化,这通常是未知的先验。在这封信中,我们将车辆任务卸载为致命的多武装强盗问题,并开发新的在线算法,以便在节点选择上启用分布式决策。关键是利用边缘节点的上下文信息,将无限探索空间转换为有限的探测空间。从理论上讲,我们证明了所提出的算法有一个额外的学习遗憾。仿真结果验证了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号