首页> 外文期刊>Wireless Communications Letters, IEEE >Off-Grid Sparse Bayesian Learning-Based Channel Estimation for MmWave Massive MIMO Uplink
【24h】

Off-Grid Sparse Bayesian Learning-Based Channel Estimation for MmWave Massive MIMO Uplink

机译:基于离网稀疏贝叶斯学习的MmWave大规模MIMO上行链路信道估计

获取原文
获取原文并翻译 | 示例

摘要

In this letter, an angle domain off-grid channel estimation algorithm for the uplink millimeter wave (mm Wave) massive multiple-input and multiple-output systems is proposed. By exploiting spatial sparse structure in mmWave channels, the proposed method is capable of identifying the angles and gains of the scatterer paths. Comparing the conventional channel estimation methods for mmWave systems, the proposed method achieves better performance in terms of mean square error. Numerical simulation results are provided to verify the superiority of the proposed algorithm.
机译:本文提出了一种针对上行毫米波(mm Wave)大规模多输入多输出系统的角域离网信道估计算法。通过利用毫米波信道中的空间稀疏结构,所提出的方法能够识别散射路径的角度和增益。比较毫米波系统的常规信道估计方法,该方法在均方误差方面具有更好的性能。数值仿真结果验证了所提算法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号