首页> 外文期刊>IEEE transactions on wireless communications >Modeling wireless fading channels via stochastic differential equations: identification and estimation based on noisy measurements
【24h】

Modeling wireless fading channels via stochastic differential equations: identification and estimation based on noisy measurements

机译:通过随机微分方程为无线衰落信道建模:基于噪声测量的识别和估计

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with modeling and identification of wireless channels using noisy measurements. The models employed are governed by stochastic differential equations (SDEs) in state space form, while the identification method is based on the expectation-maximization (EM) algorithm and Kalman filtering. The algorithm is tested against real channel measurements. The results presented include state space models for the channels, estimates of inphase and quadrature components, and estimates of the corresponding Doppler power spectral densities (DPSDs), from sample noisy measurements. Based on the available measurements, it is concluded that state space models of order two are sufficient for wireless flat fading channel characterization.
机译:本文涉及使用噪声测量的无线信道建模和识别。所采用的模型由状态空间形式的随机微分方程(SDE)控制,而识别方法则基于期望最大化(EM)算法和卡尔曼滤波。针对实际信道测量测试了该算法。呈现的结果包括通道的状态空间模型,同相和正交分量的估计以及相应的多普勒功率谱密度(DPSD)的估计(来自样本噪声测量)。基于可用的测量,可以得出结论,二阶状态空间模型足以用于无线平坦衰落信道表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号