首页> 外文期刊>IEEE transactions on wireless communications >Online Learning-Based Downlink Transmission Coordination in Ultra-Dense Millimeter Wave Heterogeneous Networks
【24h】

Online Learning-Based Downlink Transmission Coordination in Ultra-Dense Millimeter Wave Heterogeneous Networks

机译:基于在线学习的下行链路传输在超密集毫米波异构网络中的协调

获取原文
获取原文并翻译 | 示例

摘要

In heterogeneous ultra-dense networks with millimeter wave macro cells and small cells, base stations (BSs) and mobile user equipments (UEs) perform beamforming operations to establish highly directional links. In spite of the spatial diversity achieved through directional links, as a number of BSs are densely deployed, inter-cell interference caused by concurrent directional transmissions of adjacent BSs becomes severe, resulting in downlink performance degradation in the network. However, it is very difficult to manage inter-cell interference because of the nature of the time-varying wireless fading environment, the dynamic changes in beam propagation directivity, and unpredictable UEs' locations. In this paper, we propose an online learning-based transmission coordination algorithm based on the framework of multi-armed bandits to learn the unknown characteristics of inter-BS interference and exploit learned data to derive an optimal policy for maximizing the number of successful downlink transmissions. Through the numerical simulations, we verify the effectiveness of the proposed online learning-based inter-BS interference management scheme.
机译:在具有毫米波宏小区和小电池的异质超密长网络中,基站(BSS)和移动用户设备(UE)执行波束形成操作以建立高度定向链路。尽管通过定向链路实现的空间分集,随着多种BSS被密集地部署,由相邻BS的并发方向传输引起的间电池干扰变得严重,导致网络中的下行链路性能下降。然而,由于时变无线衰落环境的性质,光束传播方向性的动态变化以及不可预测的UES位置,非常难以管理小区间干扰。在本文中,我们提出了一种基于在线学习的传输协调算法,基于多武装匪框架的框架,了解BS间干扰和利用学习数据的未知特征,以获得最佳策略,以最大化成功的下行链路传输的数量。通过数值模拟,我们验证了基于在线学习的BS间干扰管理方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号