首页> 外文期刊>Wind & structures >Alternative robust estimation methods for parameters of Gumbel distribution: an application to wind speed data with outliers
【24h】

Alternative robust estimation methods for parameters of Gumbel distribution: an application to wind speed data with outliers

机译:Gumbel分布参数的替代鲁棒估计方法:具有异常值的风速数据的应用

获取原文
获取原文并翻译 | 示例

摘要

An accurate determination of wind speed distribution is the basis for an evaluation of the wind energy potential required to design a wind turbine, so it is important to estimate unknown parameters of wind speed distribution. In this paper, Gumbel distribution is used in modelling wind speed data, and alternative robust estimation methods to estimate its parameters are considered. The methodologies used to obtain the estimators of the parameters are least absolute deviation, weighted least absolute deviation, median/MAD and least median of squares. The performances of the estimators are compared with traditional estimation methods (i.e., maximum likelihood and least squares) according to bias, mean square deviation and total mean square deviation criteria using a Monte-Carlo simulation study for the data with and without outliers. The simulation results show that least median of squares and median/MAD estimators are more efficient than others for data with outliers in many cases. However, median/MAD estimator is not consistent for location parameter of Gumbel distribution in all cases. In real data application, it is firstly demonstrated that Gumbel distribution fits the daily mean wind speed data well and is also better one to model the data than Weibull distribution with respect to the root mean square error and coefficient of determination criteria. Next, the wind data modified by outliers is analysed to show the performance of the proposed estimators by using numerical and graphical methods.
机译:准确确定风速分布是评估设计风力涡轮机所需的风能潜力的基础,因此估算未知的风速分布参数很重要。在本文中,将Gumbel分布用于风速数据建模,并考虑了用于估计其参数的替代鲁棒估计方法。用于获得参数估计量的方法是最小绝对偏差,加权最小绝对偏差,中位数/ MAD和最小平方中位数。使用蒙特卡洛模拟研究对有或没有异常值的数据,根据偏差,均方差和总均方差标准,将估计器的性能与传统估计方法(即最大似然和最小二乘)进行比较。仿真结果表明,在许多情况下,对于具有异常值的数据,最小二乘方中位数和中位数/ MAD估计量比其他估计数更有效。但是,在所有情况下,中位数/ MAD估计量与Gumbel分布的位置参数不一致。在实际数据应用中,首先证明了Gumbel分布非常适合日均风速数据,并且在均方根误差和确定标准系数方面比Weibull分布更好地建模。接下来,通过数值和图形方法分析离群值修改后的风数据,以显示拟议的估算器的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号