首页> 美国卫生研究院文献>other >Robust Estimation of the Parameters of g - and - h Distributions with Applications to Outlier Detection
【2h】

Robust Estimation of the Parameters of g - and - h Distributions with Applications to Outlier Detection

机译:g-和-h分布参数的稳健估计及其在异常值检测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The g - and - h distributional family is generated from a relatively simple transformation of the standard normal and can approximate a broad spectrum of distributions. Consequently, it is easy to use in simulation studies and has been applied in multiple areas, including risk management, stock return analysis and missing data imputation studies. A rapidly convergent quantile based least squares (QLS) estimation method to fit the g - and - h distributional family parameters is proposed and then extended to a robust version. The robust version is then used as a more general outlier detection approach. Several properties of the QLS method are derived and comparisons made with competing methods through simulation. Real data examples of microarray and stock index data are used as illustrations.
机译:g和h分布族是通过标准正态的相对简单的转换生成的,可以近似于宽范围的分布。因此,它易于在模拟研究中使用,并已应用于多个领域,包括风险管理,库存收益分析和缺失数据估算研究。提出了一种快速收敛的基于分位数的最小二乘(QLS)估计方法来拟合g和h分布族参数,然后将其扩展到健壮版本。然后,将健壮版本用作更通用的离群值检测方法。推导了QLS方法的几个属性,并通过仿真与竞争方法进行了比较。微阵列的真实数据示例和股票指数数据用作说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号