首页> 外文期刊>Wind & structures >Elastic analysis of arbitrary shape plates using Meshless local Petrov-Galerkin method
【24h】

Elastic analysis of arbitrary shape plates using Meshless local Petrov-Galerkin method

机译:使用无网格局部Petrov-Galerkin方法的任意形状板的弹性分析

获取原文
获取原文并翻译 | 示例

摘要

In this study the stress analysis of orthotropic thin plate with arbitrary shapes for diffeie it boundary conditions is investigated Meshfree method is applied to static analysis of thin plates with various geometries based on the Kirchhoff classical plate theory. According to the meshfree method the domain of the plates are expressed through a set of nodes without using mesh In this method, a set of nodes are defined in a standard rectangular domain, then via a third order map, these nodes are transferred to the main domain of the original geometry; therefore the analysis of the plates can be done. Herein, Meshless local Petrov-Galerkin (MLPG) as a meshfree numerical method is utilized. The MLS function in MLPG does not satisfy essential boundary conditions using Delta Kronecker. In the MLPG method, direct interpolation of the boundary conditions can be applied due to constructing node by node of the system equations. The detailed parametric study is conducted, focusing on the arbitrary geometries of the thin plates. Results show that the meshfree method provides better accuracy rather than finite element method. Also, it is found that trend of the figures have good agreement with relevant published papers.
机译:在这项研究中,研究了任意形状的正交异性薄板在边界条件方面的应力分析,基于基尔霍夫经典板理论,将Meshfree方法应用于具有各种几何形状的薄板的静态分析。根据无网格方法,通过不使用网格的一组节点来表示板的区域。在这种方法中,在标准矩形域中定义一组节点,然后通过三阶映射将这些节点转移到主节点上。原始几何图形的范围;因此可以对板进行分析。在此,利用无网格局部Petrov-Galerkin(MLPG)作为无网格数值方法。使用Delta Kronecker,MLPG中的MLS函数不满足基本边界条件。在MLPG方法中,由于逐个构造系统方程,因此可以应用边界条件的直接插值。进行了详细的参数研究,重点是薄板的任意几何形状。结果表明,无网格法比有限元法具有更高的精度。此外,发现数字趋势与相关已发表的论文有很好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号