...
首页> 外文期刊>Water resources research >Forecasting river temperatures in real time using a stochastic dynamics approach
【24h】

Forecasting river temperatures in real time using a stochastic dynamics approach

机译:使用随机动力学方法实时预测河流温度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We address the growing need for accurate water temperature predictions in regulated rivers to inform decision support systems and protect aquatic habitats. Although many suitable river temperature models exist, few simultaneously model water temperature dynamics while considering uncertainty of predictions and assimilating observations. Here, we employ a stochastic dynamics approach to water temperature modeling that estimates both the water temperature state and its uncertainty by propagating error through a physically based dynamical system. This method involves converting the governing hydrodynamic and heat transport equations into a state space form and assimilating observations via the Kalman Filter. This model, called the River Assessment for Forecasting Temperature (RAFT), closes the heat budget by tracking heat movement using a robust semi-Lagrangian numerical scheme. RAFT considers key thermodynamic processes, including advection, longitudinal dispersion, atmospheric heat fluxes, lateral inflows, streambed heat exchange, and unsteady nonuniform flow. Inputs include gridded meteorological forecasts from a numerical weather prediction model, bathymetric cross-sectional geometry, and temperature and flow measurements at the upstream boundary and tributaries. We applied RAFT to an ~100 km portion of the Sacramento River in California, downstream of Keswick Dam (a regulatory dam below Shasta Dam), at a spatial resolution of 2 km and a temporal resolution of 15 min. Model prediction error over a 6 month calibration period was on the order of 0.5℃. When temperature and flow gage data were assimilated, the mean prediction error was significantly less (0.25℃). The model accurately predicts the magnitude and timing of diel temperature fluctuations and can provide 72 h water temperature forecasts when linked with meteorological forecasts and real-time flow/ temperature monitoring networks. RAFT is potentially scalable to model and forecast finegrained one-dimensional temperature dynamics covering a broad extent in a variety of regulated rivers provided that adequate input data are available.
机译:我们满足了对受管制河流中准确的水温预测不断增长的需求,以为决策支持系统提供信息并保护水生生境。尽管存在许多合适的河流温度模型,但很少考虑到预测的不确定性和同化观测值的同时对水温动态建模。在这里,我们采用随机动力学方法对水温进行建模,该方法通过基于物理的动力系统传播误差来估计水温状态及其不确定性。该方法涉及将控制流体动力学和热传输方程式转换为状态空间形式,并通过卡尔曼滤波器吸收观测值。该模型称为河流预测温度评估(RAFT),通过使用稳健的半拉格朗日数值方案跟踪热运动来关闭热量预算。 RAFT考虑了关键的热力学过程,包括对流,纵向扩散,大气热通量,横向流入,流床换热和不稳定的非均匀流动。输入的内容包括来自数值天气预报模型的网格化气象预报,测深剖面几何以及上游边界和支流的温度和流量测量值。我们将RAFT应用于加州萨克拉曼多河约100 km的部分,即Keswick大坝(Shasta大坝下方的管制大坝)的下游,其空间分辨率为2 km,时间分辨率为15 min。在6个月的校准期内,模型预测误差约为0.5℃。当温度和流量表数据同化时,平均预测误差显着减小(0.25℃)。该模型可准确预测diel温度波动的幅度和时间,并与气象预报和实时流量/温度监控网络链接时,可提供72小时的水温预报。只要有足够的输入数据,RAFT就有可能进行扩展,以建模和预测涵盖广泛范围内各种受管制河流的细粒度一维温度动态。

著录项

  • 来源
    《Water resources research》 |2013年第9期|5168-5182|共15页
  • 作者单位

    Institute of Marine Sciences, University of California, Santa Cruz, California, USA,Fisheries Ecology Division, National Marine Fisheries Service, NOAA, 110 Shaffer Rd., Santa Cruz, CA 95060, USA;

    Fisheries Ecology Division, National Marine Fisheries Service, NOAA, Santa Cruz, California, USA;

    Fisheries Ecology Division, National Marine Fisheries Service, NOAA, Santa Cruz, California, USA;

    Biospheric Science Branch, NASA Ames Research Center, Moffett Field, California, USA,Department of Science and Environmental Policy, California State University Monterey Bay, Seaside California, USA;

    Biospheric Science Branch, NASA Ames Research Center, Moffett Field, California, USA;

    Department of Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado, USA;

    Fisheries Ecology Division, National Marine Fisheries Service, NOAA, Santa Cruz, California, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号