首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Block-based multiperiod dynamic memory design for low data-retention power
【24h】

Block-based multiperiod dynamic memory design for low data-retention power

机译:基于块的多极动态存储器设计,用于低数据保留功率

获取原文
获取原文并翻译 | 示例

摘要

Dynamic random access memorys (DRAMs) are widely used in portable applications due to their high storage density. In standby mode, the main source of DRAM power dissipation is the refresh operation that periodically restores leaking charge in each memory cell to its correct level. Conventional DRAMs use a single refresh period determined by the cell with the largest leakage. This approach is simple but dissipative, because it forces unnecessary refreshes for the majority of the cells with small leakage. In this paper, we investigate a novel scheme that relies on small refresh blocks and multiple refresh periods to reduce DRAM dissipation by decreasing the number of cells refreshed too often. In contrast to conventional row-based refresh, small refresh blocks are used to increase worst case data retention times. Long periods are used to accommodate cells with small leakage. Retention times are further extended by adding a swap cell to each refresh block. We give a novel polynomial-time algorithm for computing an optimal set of refresh periods for block-based multiperiod refresh. Specifically, given an integer K and a distribution of data-retention times, in O(KN/sup 2/) steps our algorithm computes K refresh periods that minimize DRAM dissipation, where N is the number of refresh blocks in the memory. We describe and evaluate a scalable implementation of our refresh scheme whose overhead is asymptotically linear with memory size. In simulations with a 16-Mb DRAM, block-based multiperiod refresh reduces DRAM standby dissipation by a multiplicative factor of 4 with area overhead below 6%. Moreover, our proposed scheme is robust to semiconductor process variations, with power savings degrading no more than 7% over a 20-fold increase of leaky cells.
机译:由于其高存储密度,动态随机存取存储器(DRAM)广泛用于便携式应用。在待机模式下,DRAM功耗的主要来源是刷新操作,其周期性地将每个存储器单元中的泄漏充电恢复到其正确级别。传统的DRAM使用具有最大泄漏的单元格确定的单个刷新周期。这种方法很简单但耗散,因为它迫使大多数细胞的不必要的刷新泄漏。在本文中,我们研究了一种依赖于小刷新块的新颖方案和多个刷新周期,以通过减少经常刷新的细胞数量来减少DRAM耗散。与传统的基于行的刷新相比,使用小刷新块来增加最坏情况的数据保留时间。长时间用于容纳小泄漏的细胞。通过向每个刷新块添加交换单元来进一步扩展保留时间。我们提供了一种用于计算基于块的多体刷新的最佳刷新周期的多项式算法。具体地,给定整数k和数据保留时间的分布,在O(kn / sup 2 /)步骤中,我们的算法计算最小化DRAM耗散的k刷新周期,其中n是存储器中的刷新块的数量。我们描述并评估了我们的刷新方案的可扩展实现,其开销具有渐近线性的内存大小。在具有16 MB DRAM的模拟中,基于块的多级刷新将DRAM待机耗散降低了4个乘法因子4,面积开销低于6%。此外,我们所提出的方案对半导体工艺变化具有稳健,功率节省不超过7%的泄漏细胞增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号