首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >VLSI array algorithms and architectures for RSA modular multiplication
【24h】

VLSI array algorithms and architectures for RSA modular multiplication

机译:用于RSA模块化乘法的VLSI阵列算法和体系结构

获取原文
获取原文并翻译 | 示例

摘要

We present two novel iterative algorithms and their array structures for integer modular multiplication. The algorithms are designed for Rivest-Shamir-Adelman (RSA) cryptography and are based on the familiar iterative Horner's rule, but use precalculated complements of the modulus. The problem of deciding which multiples of the modulus to subtract in intermediate iteration stages has been simplified using simple look-up of precalculated complement numbers, thus allowing a finer-grain pipeline. Both algorithms use a carry save adder scheme with module reduction performed on each intermediate partial product which results in an output in carry-save format. Regularity and local connections make both algorithms suitable for high-performance array implementation in FPGA's or deep submicron VLSI. The processing nodes consist of just one or two full adders and a simple multiplexor. The stored complement numbers need to be precalculated only when the modulus is changed, thus not affecting the performance of the main computation. In both cases, there exists a bit-level systolic schedule, which means the array can be fully pipelined for high performance and can also easily be mapped to linear arrays for various space/time tradeoffs.
机译:我们提出了两种新颖的迭代算法及其用于整数模乘的数组结构。该算法是为Rivest-Shamir-Adelman(RSA)密码设计的,并且基于熟悉的迭代霍纳规则,但使用预先计算的模数补码。通过简单查找预先计算的补码数,简化了在中间迭代阶段确定要减去的模数倍数的问题,从而简化了流水线。两种算法都使用进位保存加法器方案,并对每个中间部分乘积执行模块缩减,从而产生以进位保存格式的输出。规则性和本地连接使这两种算法都适合在FPGA或深亚微米VLSI中实现高性能阵列。处理节点仅由一个或两个完整的加法器和一个简单的多路复用器组成。仅在更改模数时才需要预先计算存储的补码数,因此不会影响主计算的性能。在这两种情况下,都存在一个比特级的收缩时间表,这意味着该阵列可以完全流水线化以实现高性能,还可以轻松地映射到线性阵列以进行各种空间/时间折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号