首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >On methods to match a test pattern generator to a circuit-under-test
【24h】

On methods to match a test pattern generator to a circuit-under-test

机译:有关将测试模式发生器与被测电路匹配的方法

获取原文
获取原文并翻译 | 示例

摘要

Autonomous circuits such as linear feedback shift registers (LFSRs) and cellular automats are used as low-cost test pattern generators for circuits testable by pseudo-random patterns. We demonstrate that different LFSRs of the same degree, started from different initial states, may yield significantly different fault coverages and test lengths when used as test pattern generators for a given circuit, especially when the circuit has faults which are hard to detect by a practical number of pseudo-random patterns. Methods to tailor an LFSR to a circuit-under-test are proposed, that attempt to select the most effective LFSR and initial state for the circuit. The first method is based on a learning process that can be applied directly to certain types of circuits. The learning process is also used to establish a collection of (primitive and nonprimitive) LFSRs and initial states, effective for arbitrary circuits. This collection can then be used as a starting point for a genetic optimization procedure aimed at improving the selected LFSR and initial state. The use of an LFSR that can apply complemented as well as uncomplemented test patterns is shown to significantly improve the fault coverage, at the cost of a small area overhead. Experimental results demonstrate the applicability of the proposed approaches to stuck-at faults and to transition faults.
机译:诸如线性反馈移位寄存器(LFSR)和蜂窝自动机之类的自主电路用作可通过伪随机模式测试的电路的低成本测试模式生成器。我们证明,从不同的初始状态开始的相同程度的不同LFSR,在用作给定电路的测试模式生成器时,可能会产生明显不同的故障覆盖率和测试长度,尤其是当电路具有实际难以检测到的故障时伪随机模式的数量。提出了一种针对被测电路定制LFSR的方法,这些方法试图为电路选择最有效的LFSR和初始状态。第一种方法基于可直接应用于某些类型电路的学习过程。学习过程还用于建立(原始和非原始)LFSR和初始状态的集合,对任意电路均有效。然后,可以将该集合用作旨在优化所选LFSR和初始状态的遗传优化程序的起点。可以同时使用补充测试模式和未补充测试模式的LFSR被证明可以显着提高故障覆盖率,但代价是要占用较小的区域开销。实验结果证明了所提出的方法对于卡住故障和过渡故障的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号