首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >On methods to match a test pattern generator to acircuit-under-test
【24h】

On methods to match a test pattern generator to acircuit-under-test

机译:有关将测试模式发生器与被测电路匹配的方法

获取原文
获取原文并翻译 | 示例

摘要

Autonomous circuits such as linear feedback shift registersn(LFSRs) and cellular automats are used as low-cost test patternngenerators for circuits testable by pseudo-random patterns. Wendemonstrate that different LFSRs of the same degree, started fromndifferent initial states, may yield significantly different faultncoverages and test lengths when used as test pattern generators for angiven circuit, especially when the circuit has faults which are hard tondetect by a practical number of pseudo-random patterns. Methods tontailor an LFSR to a circuit-under-test are proposed, that attempt tonselect the most effective LFSR and initial state for the circuit. Thenfirst method is based on a learning process that can be applied directlynto certain types of circuits. The learning process is also used tonestablish a collection of (primitive and nonprimitive) LFSRs and initialnstates, effective for arbitrary circuits. This collection can then benused as a starting point for a genetic optimization procedure aimed atnimproving the selected LFSR and initial state. The use of an LFSR thatncan apply complemented as well as uncomplemented test patterns is shownnto significantly improve the fault coverage, at the cost of a small areanoverhead. Experimental results demonstrate the applicability of thenproposed approaches to stuck-at faults and to transition faults
机译:诸如线性反馈移位寄存器n(LFSR)和蜂窝自动机之类的自主电路被用作可通过伪随机模式进行测试的电路的低成本测试模式生成器。温特证明,从不同的初始状态开始的相同程度的不同LFSR,在用作血管输送电路的测试模式生成器时,可能会产生明显不同的故障覆盖率和测试长度,尤其是当该电路具有难以被大量伪随机检测的故障时模式。提出了在测试电路中增加LFSR的方法,尝试选择最有效的LFSR和电路的初始状态。然后,第一种方法基于学习过程,该过程可以直接应用于某些类型的电路。学习过程还用于建立(原始和非原始)LFSR和初始状态的集合,对任意电路都有效。然后可以将此集合作为旨在优化所选LFSR和初始状态的遗传优化程序的起点。 LFSR可以同时使用补充和未补充的测试模式,这表明使用该方法可以显着提高故障覆盖率,但所需的开销却很小。实验结果证明了随后提出的方法对于卡住故障和过渡故障的适用性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号