首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Quantitative analysis and optimization techniques for on-chip cache leakage power
【24h】

Quantitative analysis and optimization techniques for on-chip cache leakage power

机译:片上高速缓存泄漏功率的定量分析和优化技术

获取原文
获取原文并翻译 | 示例

摘要

On-chip L1 and L2 caches represent a sizeable fraction of the total power consumption of microprocessors. In nanometer-scale technology, the subthreshold leakage power is becoming one of the dominant total power consumption components of those caches. In this study, we present optimization techniques to reduce the subthreshold leakage power of on-chip caches assuming that there are multiple threshold voltages, V/sub T/'s, available. First, we show a cache leakage optimization technique that examines the tradeoff between access time and subthreshold leakage power by assigning distinct V/sub T/'s to each of the four main cache components-address bus drivers, data bus drivers, decoders, and static random access memory (SRAM) cell arrays with sense amplifiers. Second, we show optimization techniques to reduce the leakage power of L1 and L2 on-chip caches without affecting the average memory access time. The key results are: 1) two additional high V/sub T/'s are enough to minimize leakage in a single cache-3 V/sub T/'s if we include a nominal low V/sub T/ for microprocessor core logic; 2) if L1 size is fixed, increasing L2 size can result in much lower leakage without reducing average memory access time; 3) if L2 size is fixed, reducing L1 size may result in lower leakage without loss of the average memory access time for the SPEC2K benchmarks; and 4) smaller L1 and larger L2 caches than are typical in today's processors result in significant leakage and dynamic power reduction without affecting the average memory access time.
机译:片上L1和L2缓存占微处理器总功耗的很大一部分。在纳米级技术中,亚阈值泄漏功率正成为这些缓存的主要总功耗组件之一。在这项研究中,我们假设存在多个阈值电压V / sub T /,提出了降低片上缓存的亚阈值泄漏功率的优化技术。首先,我们展示一种缓存泄漏优化技术,该技术通过为四个主要缓存组件(地址总线驱动器,数据总线驱动器,解码器和解码器)分别分配不同的V / sub T /来检查访问时间与亚阈值泄漏功率之间的折衷。具有读出放大器的静态随机存取存储器(SRAM)单元阵列。其次,我们展示了优化技术,可在不影响平均存储器访问时间的情况下减少L1和L2片上高速缓存的泄漏功率。关键结果是:1)如果我们包括用于微处理器内核逻辑的标称低V / sub T /,则另外两个高V / sub T /足以将单个高速缓存中的泄漏降至最低3V / sub T /。 ; 2)如果L1大小是固定的,则增加L2大小可以在不减少平均内存访问时间的情况下减少泄漏。 3)如果L2大小是固定的,则减小L1大小可能会导致泄漏减少,而不会损失SPEC2K基准测试的平均内存访问时间;和4)与当今的处理器相比,较小的L1和较大的L2缓存会导致大量泄漏和动态功耗降低,而不会影响平均内存访问时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号