首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >TCG: A transitive closure graph-based representation for general floorplans
【24h】

TCG: A transitive closure graph-based representation for general floorplans

机译:TCG:用于一般平面图的基于传递闭合图的表示

获取原文
获取原文并翻译 | 示例

摘要

In this brief, we introduce the concept of the P*-admissible representation and propose a P*-admissible, transitive closure graph-based representation for general floorplans, called transitive closure graph (TCG), and show its superior properties. TCG combines the advantages of popular representations such as sequence pair, BSG, and B*-tree. Like sequence pair and BSG, but unlike O-tree, B*-tree, and CBL, TCG is P*-admissible. Like B*-tree, but unlike sequence pair, BSG, O-tree, and CBL, TCG does not need to construct additional constraint graphs for the cost evaluation during packing, implying a faster runtime. Further, TCG supports incremental update during operations and keeps the information of boundary modules as well as the shapes and the relative positions of modules in the representation. More importantly, the geometric relation among modules is transparent not only to the TCG representation but also to its operation, facilitating the convergence to a desired solution. All of these properties make TCG an effective and flexible representation for handling the general floorplan/placement design problems with various constraints. Experimental results show the promise of TCG.
机译:在本简介中,我们介绍了P *允许表示的概念,并提出了基于P *允许的基于传递闭合图的一般平面图表示,称为传递闭合图(TCG),并显示了其优越的性能。 TCG结合了诸如序列对,BSG和B * -tree之类流行表示的优点。类似于序列对和BSG,但与O树,B *树和CBL不同,TCG是P *允许的。与B *树类似,但与序列对,BSG,O树和CBL不同,TCG不需要为打包期间的成本评估构造其他约束图,这意味着运行时间更快。此外,TCG支持在操作期间进行增量更新,并保留边界模块的信息以及表示中模块的形状和相对位置。更重要的是,模块之间的几何关系不仅对TCG表示透明,而且对它的操作也透明,从而有助于收敛到所需的解决方案。所有这些属性使TCG成为处理各种约束的一般平面图/布局设计问题的有效而灵活的表示。实验结果证明了TCG的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号