【24h】

Variation-Aware Adaptive Voltage Scaling System

机译:变化感知自适应电压缩放系统

获取原文
获取原文并翻译 | 示例

摘要

Conventional voltage scaling systems require a delay margin to maintain a certain level of robustness across all possible device and wire process variations and temperature fluctuations. This margin is required to cover for a possible change in the critical path due to such variations. Moreover, a slower interconnect delay scaling with voltage compared to logic delay can cause the critical path to change from one operating voltage to another. With technology scaling, both process variation and interconnect delay are growing and demanding more margin to guarantee an error-free operation. Such margin is translated into a voltage overhead and a corresponding energy inefficiency. In this paper, a critical path emulator architecture is shown to track the changing critical path at different process splits by probing the actual transistor and wire conditions. Furthermore, voltage scaling characteristics of the actual critical path is closely tracked by programming logic and interconnect delay lines to achieve the same delay combination as the actual critical path. Compared to conventional open-loop and closed-loop systems, the proposed system is up to 39% and 24% more energy efficient, respectively. A 0.18-mum technology test chip is designed to verify the functionality of the proposed system showing critical path tracking of a 16times16 bit multiplier
机译:传统的电压缩放系统需要延迟余量,以在所有可能的器件和导线工艺变化以及温度波动范围内保持一定程度的鲁棒性。需要此余量来弥补由于此类变化而导致的关键路径可能发生的变化。此外,与逻辑延迟相比,电压对电压的互连延迟缩放速度较慢,会导致关键路径从一种工作电压变为另一种工作电压。随着技术的扩展,工艺变化和互连延迟都在增长,并要求有更多的余量以确保无错误运行。这样的裕度被转换为电压开销和相应的能量效率低下。在本文中,展示了一种关键路径仿真器体系结构,它可以通过探测实际的晶体管和布线条件来跟踪在不同工艺拆分时不断变化的关键路径。此外,通过编程逻辑和互连延迟线可以紧密跟踪实际关键路径的电压缩放特性,以实现与实际关键路径相同的延迟组合。与传统的开环和闭环系统相比,该系统的能源效率分别提高了39%和24%。设计了一个0.18微米技术测试芯片,以验证建议的系统的功能,该系统显示了16×16位乘法器的关键路径跟踪

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号