首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >A Quadratic Modeling-Based Framework for Accurate Statistical Timing Analysis Considering Correlations
【24h】

A Quadratic Modeling-Based Framework for Accurate Statistical Timing Analysis Considering Correlations

机译:考虑相关性的基于二次建模的精确统计时序分析框架

获取原文
获取原文并翻译 | 示例

摘要

The impact of parameter variations on timing due to process variations has become significant in recent years. In this paper, we present a statistical timing analysis (STA) framework with quadratic gate delay models that also captures spatial correlations. Our technique does not make any assumption about the distribution of the parameter variations, gate delays, and arrival times. We propose a Taylor-series expansion-based quadratic representation of gate delays and arrival times which are able to effectively capture the nonlinear dependencies that arise due to increasing parameter variations. In order to reduce the computational complexity introduced due to quadratic modeling during STA, we also propose an efficient linear modeling driven quadratic STA scheme. We ran two sets of experiments assuming the global parameters to have uniform and Gaussian distributions, respectively. On an average, the quadratic STA scheme had 20.5$,times$ speedup in runtime as compared to Monte Carlo simulations with an rms error of 0.00135 units between the two timing cummulative density functions (CDFs). The linear modeling driven quadratic STA scheme had 51.5 $,times$ speedup in runtime as compared to Monte Carlo simulations with an rms error of 0.0015 units between the two CDFs. Our proposed technique is generic and can be applied to arbitrary variations in the underlying parameters under any spatial correlation model.
机译:近年来,由于工艺变化而导致的参数变化对时序的影响已变得十分明显。在本文中,我们提出了具有时序门延迟模型的统计时序分析(STA)框架,该框架还捕获了空间相关性。我们的技术没有对参数变化,门控延迟和到达时间的分布做出任何假设。我们提出了基于泰勒级数展开式的闸门延迟和到达时间的二次表示,它们能够有效地捕获由于参数变化增加而引起的非线性依赖性。为了减少在STA期间由于二次建模而引入的计算复杂性,我们还提出了一种有效的线性建模驱动的二次STA方案。我们进行了两组实验,假设全局参数分别具有均匀分布和高斯分布。平均而言,与蒙特卡洛模拟相比,二次STA方案在运行时的速度提高了20.5倍,两个定时累积密度函数(CDF)之间的均方根误差为0.00135单位。与蒙特卡罗模拟相比,线性建模驱动的二次STA方案在运行时的速度提高了51.5美元,两个CDF之间的均方根误差为0.0015个单位。我们提出的技术是通用的,可以在任何空间相关模型下应用于基础参数的任意变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号