首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >A New Modular Exponentiation Architecture for Efficient Design of RSA Cryptosystem
【24h】

A New Modular Exponentiation Architecture for Efficient Design of RSA Cryptosystem

机译:高效设计RSA密码系统的新型模块化幂运算架构

获取原文
获取原文并翻译 | 示例

摘要

Modular exponentiation with a large modulus, which is usually accomplished by repeated modular multiplications, has been widely used in public key cryptosystems for secured data communications. To speed up the computation, the Montgomery modular multiplication algorithm is used to relax the process of quotient determination, and the carry-save addition (CSA) is employed to reduce the critical path delay. In this paper, based on the inherent data dependency between the modular multiplication and square operations in the H-algorithm of modular exponentiation, we present a new modular exponentiation architecture with a unified modular multiplication/square module and show how to reduce the number of input operands for the CSA tree by mathematical manipulation. The developed architecture has the following advantages. 1) There is no need to convert the carry-save form of an operand into its binary representation at the end of each modular multiplication. In this way, except the final step to get the result of modular exponentiation, the time-consuming carry propagation can then be eliminated. 2) The number of input operands for the CSA tree is reduced in a very efficient way. 3) The hardware saving is achieved with very limited impact on the original critical path delay when designed with two distinct modular multiplication and square components. Experimental results show that our modular exponentiation design obtains the least hardware complexity compared with the existing work and outperforms them in terms of area-time (AT) complexity as well.
机译:具有大模量的模幂通常通过重复的模乘来完成,已广泛用于安全数据通信的公钥密码系统中。为了加快计算速度,使用了蒙哥马利模块化乘法算法来简化商确定过程,并采用进位保留加法(CSA)来减少关键路径延迟。在本文中,基于模块化乘积的H算法中模块化乘法和平方运算之间的固有数据依赖性,我们提出了一种具有统一模块化乘法/平方模块的新模块化幂运算架构,并展示了如何减少输入数量通过数学操作获得CSA树的操作数。开发的体系结构具有以下优点。 1)不需要在每个模乘的末尾将操作数的进位保存形式转换为其二进制表示形式。这样,除了获得模幂的结果的最后步骤外,可以消除耗时的进位传播。 2)以非常有效的方式减少了CSA树的输入操作数的数量。 3)当使用两个截然不同的模乘和平方分量进行设计时,对原始关键路径延迟的影响非常有限,从而节省了硬件。实验结果表明,与现有工作相比,我们的模块化指数设计获得了最低的硬件复杂性,并且在区域时间(AT)复杂性方面也胜过它们。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号