首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Exploiting Application Data-Parallelism on Dynamically Reconfigurable Architectures: Placement and Architectural Considerations
【24h】

Exploiting Application Data-Parallelism on Dynamically Reconfigurable Architectures: Placement and Architectural Considerations

机译:在动态可重配置架构上利用应用程序数据并行性:布局和架构注意事项

获取原文
获取原文并翻译 | 示例

摘要

Partial dynamic reconfiguration, often called run-time reconfiguration (RTR), is a key feature in modern reconfigurable platforms. In this paper, we present parallelism granularity selection (PARLGRAN), an application mapping approach that maximizes performance of application task chains on architectures with such capability. PARLGRAN essentially selects a suitable granularity of data-parallelism for individual data parallel tasks while considering key issues such as significant reconfiguration overhead and placement constraints. It integrates granularity selection very effectively in a joint scheduling and placement formulation, necessary due to constraints imposed by partial RTR. As a key step to validating PARLGRAN, we additionally present an exact strategy (integer linear programming formulation). We demonstrate that PARLGRAN generates high-quality schedules with: 1) a set of small test cases where we compare our results with the exact strategy; 2) a very large set of synthetic experiments with over a thousand data-points where we compare it with a simpler strategy that tries to statically maximize data-parallelism, i.e., only considers resource availability; and 3) a detailed application case study of JPEG encoding. The application case-study confirms that blindly maximizing data-parallelism can result in schedules even worse than that generated by a simple (but RTR-aware) approach oblivious to data-parallelism. Last, but very important, we demonstrate that our approach is well-suited for true on-demand computing with detailed execution time estimates on a typical embedded processor. Heuristic execution time is comparable to task execution time, i.e., it is feasible to integrate PARLGRAN in a run-time scheduler for dynamically reconfigurable architectures.
机译:部分动态重新配置(通常称为运行时重新配置(RTR))是现代可重新配置平台中的关键功能。在本文中,我们介绍了并行度粒度选择(PARLGRAN),这是一种应用程序映射方法,可在具有这种功能的体系结构上最大化应用程序任务链的性能。 PARLGRAN本质上为各个数据并行任务选择了合适的数据并行粒度,同时考虑了诸如重大的重新配置开销和放置约束之类的关键问题。由于部分RTR施加的约束,它非常有效地将粒度选择有效地集成到联合调度和放置公式中。作为验证PARLGRAN的关键步骤,我们另外提出了一种精确的策略(整数线性规划公式)。我们证明PARLGRAN可以通过以下方式生成高质量的计划:1)一组小型测试用例,将我们的结果与确切的策略进行比较; 2)包含1000多个数据点的大量合成实验,我们将其与尝试静态地最大化数据并行度的简单策略(即仅考虑资源可用性)进行比较; 3)JPEG编码的详细应用案例研究。该应用案例研究证实,盲目地最大化数据并行性可能导致调度比由不考虑数据并行性的简单(但具有RTR意识的)方法生成的调度更糟糕。最后,但非常重要,我们证明了我们的方法非常适合真正的按需计算,并在典型的嵌入式处理器上提供了详细的执行时间估算。启发式执行时间可与任务执行时间相比,即,将PARLGRAN集成到运行时调度程序中以实现动态可重配置架构是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号