首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >A Generic Scalable Architecture for Min-Sum/Offset-Min-Sum Unit for Irregular/Regular LDPC Decoder
【24h】

A Generic Scalable Architecture for Min-Sum/Offset-Min-Sum Unit for Irregular/Regular LDPC Decoder

机译:用于不规则/规则LDPC解码器的最小和/偏移-最小和-单位的通用可伸缩体系结构

获取原文
获取原文并翻译 | 示例

摘要

The most common algorithm used in iterative decoding of low-density parity check (LDPC) codes is based on a generic class of the sum-product algorithm, which has a nonlinear dependence on the log(tanh()) function. The implementation based on fixed precision has substantial loss of accuracy and is computationally expensive with full precision. A suboptimal version of belief propagation called the offset-min-sum algorithm is generally used in hardware implementation. This paper proposes a generic scalable architecture for minimum search during check-node operation in the offset-min-sum algorithm applicable to regular as well as irregular LDPC codes with check node of any degree ${d}$. For an LDPC code with maximum check node degree ${d}$ , the proposed architecture consists of $2(d-2)$ 2 $, times ,$1 multiplexers and $3(d-2)$ two-input compare-and-select units (CSUs). This has latency of $[{2}lceil log _{2}(d)rceil -2]t_{dc}$ when $lceil log _{2}(d)rceil -log _{2}(d) < log _{2}({4}/{3})$ else $[{2}lceil log _{2}(d)rceil -3]t_{dc}$, with $t_{dc}$ representing the delay of a two-input CSU. The proposed architecture has been implemented for ${d=20}$ using a TSMC 0.18-$mu hbox {m}$ CMOS process.
机译:低密度奇偶校验(LDPC)码的迭代解码中使用的最常见算法是基于求和积算法的通用类,该类对log(tanh())函数具有非线性依赖性。基于固定精度的实现会大大降低精度,并且以全精度计算会很昂贵。信念实现的次优版本称为偏移最小和算法,通常在硬件实现中使用。本文提出了一种通用的可伸缩体系结构,用于最小偏移和算法中的最小校验节点操作中的最小搜索,该最小和算法适用于校验度为$ {d} $的规则和不规则LDPC码。对于具有最大校验节点度$ {d} $的LDPC码,建议的体系结构由$ 2(d-2)$ 2 $,乘数,$ 1多路复用器和$ 3(d-2)$两输入比较选择组成。单位(CSU)。当$ lceil log _ {2}(d)rceil -log _ {2}(d)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号