首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >Visual Vocabulary Processor Based on Binary Tree Architecture for Real-Time Object Recognition in Full-HD Resolution
【24h】

Visual Vocabulary Processor Based on Binary Tree Architecture for Real-Time Object Recognition in Full-HD Resolution

机译:基于二叉树架构的视觉词汇处理器用于全高清分辨率的实时目标识别

获取原文
获取原文并翻译 | 示例

摘要

Feature matching is an indispensable process for object recognition, which is an important issue for wearable devices with video analysis functionalities. To implement a low-power SoC for object recognition, the proposed visual vocabulary processor (VVP) is employed to accelerate the speed of feature matching. The VVP can transform hundreds of 128-D SIFT vectors into a 64-D histogram for object matching by using the binary-tree-based architecture, and 16 calculators for the computations of the Euclidean distances are designed for each of the two processors in each level. A total of 126 visual words can be saved in the six-level hierarchical memory, which instantly offers the data required for the matching process, and more than 5 times of bandwidth can be saved compared with the non-binary-tree-based architecture. As a part of the recognition SoC, the VVP is implemented with the 65-nm CMOS technology, and the experimental results show that the gate count and the average power consumption are 280 K and 5.6 mW, respectively.
机译:特征匹配是对象识别必不可少的过程,这对于具有视频分析功能的可穿戴设备来说是一个重要问题。为了实现用于目标识别的低功耗SoC,采用了建议的视觉词汇处理器(VVP)来加快特征匹配的速度。 VVP可以使用基于二叉树的体系结构将数百个128-D SIFT向量转换为64-D直方图以进行对象匹配,并且为每个处理器中的两个处理器中的每个处理器设计了16个用于计算欧几里德距离的计算器水平。六级分层存储器中总共可以保存126个视觉单词,从而立即提供匹配过程所需的数据,并且与基于非二叉树的体系结构相比,可以节省超过5倍的带宽。作为识别SoC的一部分,VVP采用65纳米CMOS技术实现,实验结果表明,门数和平均功耗分别为280 K和5.6 mW。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号