首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >A Scalable High-Performance Virus Detection Processor Against a Large Pattern Set for Embedded Network Security
【24h】

A Scalable High-Performance Virus Detection Processor Against a Large Pattern Set for Embedded Network Security

机译:针对大型模式集的可扩展高性能病毒检测处理器,可实现嵌入式网络安全

获取原文
获取原文并翻译 | 示例

摘要

Contemporary network security applications generally require the ability to perform powerful pattern matching to protect against attacks such as viruses and spam. Traditional hardware solutions are intended for firewall routers. However, the solutions in the literature for firewalls are not scalable, and they do not address the difficulty of an antivirus with an ever-larger pattern set. The goal of this work is to provide a systematic virus detection hardware solution for network security for embedded systems. Instead of placing entire matching patterns on a chip, our solution is a two-phase dictionary-based antivirus processor that works by condensing as much of the important filtering information as possible onto a chip and infrequently accessing off-chip data to make the matching mechanism scalable to large pattern sets. In the first stage, the filtering engine can filter out more than 93.1% of data as safe, using a merged shift table. Only 6.9% or less of potentially unsafe data must be precisely checked in the second stage by the exact-matching engine from off-chip memory. To reduce the impact of the memory gap, we also propose three enhancement algorithms to improve performance: 1) a skipping algorithm; 2) a cache method; and 3) a prefetching mechanism.
机译:现代的网络安全应用程序通常需要具有执行强大的模式匹配功能的能力,以防御病毒和垃圾邮件之类的攻击。传统的硬件解决方案适用于防火墙路由器。但是,文献中针对防火墙的解决方案不可扩展,并且无法解决使用模式集越来越大的防病毒软件的难题。这项工作的目标是为嵌入式系统的网络安全提供一种系统的病毒检测硬件解决方案。我们的解决方案不是将完整的匹配模式放在芯片上,而是基于两阶段的基于字典的防病毒处理器,该处理器通过将尽可能多的重要过滤信息浓缩到芯片上并且不经常访问芯片外数据来建立匹配机制来工作可扩展到大型模式集。在第一阶段,筛选引擎可以使用合并的移位表安全筛选出93.1%的数据。在第二阶段,必须由片外存储器中的精确匹配引擎精确检查仅6.9%或更少的潜在不安全数据。为了减少内存间隙的影响,我们还提出了三种增强算法来提高性能:1)跳过算法; 2)缓存方法; 3)预取机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号