首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >3-D-TCAD-Based Parasitic Capacitance Extraction for Emerging Multigate Devices and Circuits
【24h】

3-D-TCAD-Based Parasitic Capacitance Extraction for Emerging Multigate Devices and Circuits

机译:基于3-D-TCAD的寄生电容提取,用于新兴的多栅极器件和电路

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the multigate field-effect transistor (FET) has emerged as the most viable contender for technology scaling down to the sub-10-nm nodes. The nonplanar nature of multigate devices, along with rapidly shrinking front-end-of-line (FEOL) and back-end-of-line (BEOL) features, has compounded the problem of parasitics extraction in future technology nodes. In this paper, for the first time, we address the above problem through a holistic 3-D-technology CAD (3-D-TCAD) flow for the extraction of ${rm FEOL}/({rm FEOL}+{rm BEOL})$ capacitances in generic multigate circuit layouts, using a transport analysis-based approach. We investigate device-level parasitic capacitances in 3-D-process-simulated bulk and silicon-on-insulator FinFETs, and uncover capacitance scaling trends for candidate single/multifin multigate FETs along the 22-nm/14-nm/10-nm technology nodes. Leveraging automated structure synthesis algorithms, we synthesize 3-D multigate 6T SRAM structures using the process-simulated devices, and examine the effects of fin pitch, gate pitch, and fin count on circuit-level parasitics. Thereafter, we show that traditional segregated FEOL/BEOL modeling approaches fail to provide accurate estimates, by back-annotating 3-D-TCAD-extracted capacitances into mixed-mode write simulations of a 6T FinFET SRAM bitcell. Finally, using FinFET NAND2 logic gate delay simulations, we establish the fact that capturing parasitics accurately is as important as modeling device transport accurately, and that performance/dynamic behavior in multigate circuits is highly sensitive to both factors.
机译:近年来,多栅场效应晶体管(FET)成为将技术缩减至10纳米以下节点的最可行竞争者。多栅极器件的非平面特性,以及快速缩小的前端(FEOL)和后端(BEOL)功能,使未来技术节点中的寄生物提取问题更加复杂。在本文中,我们首次通过整体3-D技术CAD(3-D-TCAD)流程解决上述问题,以提取 $ {rm FEOL} /({{rm FEOL} + {rm BEOL})$ 电容。我们研究了在3-D工艺模拟的块状和绝缘硅上FinFET中的器件级寄生电容,并揭示了沿22-nm / 14-nm / 10-nm技术的候选单/多鳍多栅极FET的电容缩放趋势节点。利用自动结构综合算法,我们使用过程仿真器件来合成3-D多栅极6T SRAM结构,并检查鳍间距,栅极间距和鳍数对电路级寄生效应的影响。此后,我们证明了传统的FEOL / BEOL分离建模方法无法通过将3D-TCAD提取的电容反注释到6T FinFET SRAM位单元的混合模式写入仿真中来提供准确的估计。最后,使用FinFET NAND2逻辑门延迟仿真,我们建立了以下事实:准确捕获寄生虫与准确建模器件传输同等重要,并且多栅极电路中的性能/动态行为对这两个因素高度敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号