首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >Aurora: A Cross-Layer Solution for Thermally Resilient Photonic Network-on-Chip
【24h】

Aurora: A Cross-Layer Solution for Thermally Resilient Photonic Network-on-Chip

机译:Aurora:一种用于热弹性片上光子网络的跨层解决方案

获取原文
获取原文并翻译 | 示例

摘要

With silicon optical technology moving toward maturity, the use of photonic networks-on-chip (NoCs) for global chip communication is emerging as a promising solution to the communication requirements of future many core processors. It is expected that photonic NoCs will play an important role in alleviating current power, latency, and bandwidth constraints. However, photonic NoCs are sensitive to ambient temperature variations because their basic constituents, ring resonators, are themselves sensitive to those variations. Since ring resonators are basic building blocks for photonic modulators, switches, multiplexers, and demultiplexers, variations of on-chip temperature pose serious challenges to the proper operation of photonic NoCs. Proposed methods that mitigate the effects of temperature at the device level are either difficult to use in CMOS processes or not suitable for large scale implementation. In this paper, we propose Aurora, a thermally resilient photonic NoC architecture design that supports reliable and low bit error rate (BER) on-chip communications in the presence of large temperature variations. Our proposed architecture leverages cross-layer solutions at the device, architecture, and operating system (OS) layers that individually provide considerable improvements and synergistically provide even more significant improvements. To compensate for small temperature variations, our design varies the bias current through ring resonators. For larger temperature variations, we propose architecture-level techniques to reroute messages away from hot regions, and through cooler regions, to their destinations. We also propose a thermal/congestion-aware coscheduling algorithm at the OS level to further lower BER by reorganizing the thermal profile of the chip. Our simulation results show that Aurora provides a robust architectural solution to handle temperature variation effects on future photonic NoCs. For instance, average BER and message error rate are redu- ed by 96% and 85%, respectively, when the combined thermal optimization scheme is applied. From the perspective of power efficiency, Aurora is also superior to conventional photonic NoC architectures by as much as 37%.
机译:随着硅光学技术的日趋成熟,使用光子片上网络(NoC)进行全球芯片通信已成为解决未来许多核心处理器通信需求的有希望的解决方案。预计光子NoC将在减轻当前功率,延迟和带宽限制方面发挥重要作用。但是,光子NoC对环境温度变化敏感,因为它们的基本组成部分(环形谐振器)本身对那些变化敏感。由于环形谐振器是光子调制器,开关,多路复用器和多路解复用器的基本构建块,因此片上温度的变化对光子NoC的正常运行提出了严峻挑战。提议的减轻器件级温度影响的方法或者很难在CMOS工艺中使用,或者不适合大规模实施。在本文中,我们提出了Aurora,这是一种热弹性光子NoC架构设计,可在温度变化较大的情况下支持可靠且低误码率(BER)的片上通信。我们提出的体系结构利用了设备,体系结构和操作系统(OS)层上的跨层解决方案,这些解决方案分别提供了可观的改进并协同提供了更为显着的改进。为了补偿较小的温度变化,我们的设计会改变通过环形谐振器的偏置电流。对于较大的温度变化,我们建议采用体系结构级别的技术,以将消息从较热的区域重新路由,并通过较凉的区域重新路由到目的地。我们还提出了一种OS级别的热/拥塞感知协同调度算法,以通过重组芯片的热特性来进一步降低BER。我们的仿真结果表明,Aurora提供了一种强大的体系结构解决方案,可以应对温度变化对未来光子NoC的影响。例如,当采用组合热优化方案时,平均BER和消息错误率分别降低了96%和85%。从功率效率的角度来看,Aurora还比传统的光子NoC架构高出37%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号