首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Area-Delay Efficient Digit-Serial Multiplier Based on -Partitioning Scheme Combined With TMVP Block Recombination Approach
【24h】

Area-Delay Efficient Digit-Serial Multiplier Based on -Partitioning Scheme Combined With TMVP Block Recombination Approach

机译:结合TMVP块重组的基于分区方案的时延有效数字串行乘法器

获取原文
获取原文并翻译 | 示例

摘要

Shifted polynomial basis (SPB) and generalized polynomial basis (GPB) are two efficient bases of representation in binary extension fields, and are widely studied. In this paper, we use the GPB formulation to derive a new modified SPB (MSPB) representation for arbitrary irreducible trinomials and pentanomials. It is shown that the basis conversion from the MSPB to the SPB for trinomials is free of hardware cost. We have shown that multiplication based on SPB and MSPB representations can make use of Toeplitz matrix–vector product (TMVP) formulation. The existing TMVP block recombination (TMVPBR) approach is used here to derive an efficient -partitioning TMVPBR decomposition for digit-serial double basis multiplication that can achieve subquadratic space complexity. From synthesis results, we have shown that the proposed multiplier has less area and less area-delay product compared with the existing digit-serial multipliers. We also show that the proposed multiplier using -partitioning TMVPBR decomposition can provide a better tradeoff between time and space complexities.
机译:移位多项式基础(SPB)和广义多项式基础(GPB)是二元扩展域表示的两个有效表示基础,并且得到了广泛的研究。在本文中,我们使用GPB公式为任意不可约三项式和五项式推导新的修改后的SPB(MSPB)表示形式。结果表明,从MSPB到SPB的三项式基本转换没有硬件成本。我们已经证明,基于SPB和MSPB表示的乘法可以利用Toeplitz矩阵-矢量积(TMVP)公式。这里使用现有的TMVP块重组(TMVPBR)方法来导出有效的分区TMVPBR分解,以实现数字串行双基乘法,从而可以实现二次空间复杂度。从综合结果可以看出,与现有的数字串行乘法器相比,所提出的乘法器具有更少的面积和更少的面积延迟积。我们还表明,所建议的使用-分区TMVPBR分解的乘法器可以在时间和空间复杂度之间提供更好的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号