首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >A 3-D CPU-FPGA-DRAM Hybrid Architecture for Low-Power Computation
【24h】

A 3-D CPU-FPGA-DRAM Hybrid Architecture for Low-Power Computation

机译:用于低功耗计算的3-D CPU-FPGA-DRAM混合架构

获取原文
获取原文并翻译 | 示例

摘要

The power budget is expected to limit the portion of the chip that we can power ON at the upcoming technology nodes. This problem, known as the utilization wall or dark silicon, is becoming increasingly serious. With the introduction of 3-D integrated circuits (ICs), it is likely to become more severe. Thus, how to take advantage of the extra transistors, made available by Moore’s law and the onset of 3-D ICs, within the power budget poses a significant challenge to system designers. To address this challenge, we propose a 3-D hybrid architecture consisting of a CPU layer with multiple cores, a field-programmable gate array (FPGA) layer, and a DRAM layer. The architecture is designed for low power without sacrificing performance. The FPGA layer is capable of supporting a large number of accelerators. It is placed adjacent to the CPU layer, with a communication mechanism that allows it to access CPU data caches directly. This enables fast switches between these two layers. This architecture reduces the power and energy significantly, at better or similar performance. This then alleviates the dark silicon problem by letting us power ON more components to achieve higher performance. We evaluate the proposed architecture through a new framework we have developed. Relative to the out-of-order CPU, the accelerators on the FPGA layer can reduce function-level power by and energy-delay product (EDP) by , and application-level power by and EDP by , while delivering similar performance. For the entire system, this translates to a 47.5% power reduction relative to a baseline system that consists of a CPU layer and a DRAM layer- This also translates to a 72.9% power reduction relative to an alternative system that consists of a CPU layer, an L3 cache layer, and a DRAM layer.
机译:预计功耗预算将限制我们可以在即将到来的技术节点上电的芯片部分。被称为利用壁或深色硅的问题变得越来越严重。随着3D集成电路(IC)的引入,这种情况可能会变得更加严重。因此,如何在功率预算范围内利用摩尔定律和3-D IC的出现提供的额外晶体管,对系统设计人员构成了重大挑战。为了应对这一挑战,我们提出了一种3-D混合架构,该架构由具有多个内核的CPU层,现场可编程门阵列(FPGA)层和DRAM层组成。该体系结构专为低功耗而设计,不牺牲性能。 FPGA层能够支持大量的加速器。它与CPU层相邻放置,并具有允许其直接访问CPU数据缓存的通信机制。这样可以在这两层之间进行快速切换。这种架构可显着降低功率和能量,并具有更好或相似的性能。然后,通过让我们打开更多组件以实现更高的性能,从而缓解了暗硅问题。我们通过开发的新框架评估了提议的体系结构。相对于乱序的CPU,FPGA层上的加速器可以降低功能级别的功耗和能源消耗乘积(EDP)以及应用程序级别的功耗和EDP和,同时提供类似的性能。对于整个系统,相对于由CPU层和DRAM层组成的基准系统,这意味着功耗降低了47.5%;相对于由CPU层组成的替代系统,这也意味着功耗降低了72.9%。 L3缓存层和DRAM层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号