首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Symbiote Coprocessor Unit—A Streaming Coprocessor for Data Stream Acceleration
【24h】

Symbiote Coprocessor Unit—A Streaming Coprocessor for Data Stream Acceleration

机译:Symbiote协处理器单元-用于数据流加速的流协处理器

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the design and the architecture of symbiote coprocessor unit (SCU)—a programmable streaming coprocessor for a heterogeneous reconfigurable logic-assisted data stream management systems (DSMSs) such as symbiote. The SCU is intended for streaming applications with real-time event and data processing that have stricter deadlines, high-bandwidth, and high-accuracy requirements. To meet these requirements, the SCU exploits unique characteristics of DSMSs, such as single-pass tuple processing, windowed operators, and inherent data level parallelism, using a single-instruction multiple-data very large instruction word (SIMD-VLIW) microarchitecture and a novel inverted distributed register file. In order to better explain the instruction set, design, and functionality of the various units in the SCU, this paper also provides a brief overview of SymQL—a procedural query language that we developed to describe the queries that can be executed on the SCU. Finally, this paper presents the performance of SCU using four queries that represent common data stream processing use-cases, one of them being similar to a query found in the Linear Road Benchmark. Using these queries on SCU simulation, we show that the SCU outperforms a software-only DSMS running on an AMD Opteron 2350 quad-core processor by 1.5–42 times.
机译:本文介绍了共生体协处理器单元(SCU)的设计和体系结构-一种用于共生可重构逻辑辅助数据流管理系统(DSMS)的可编程流协处理器。 SCU适用于具有实时事件和数据处理的流应用程序,这些应用程序具有更严格的期限,高带宽和高精度要求。为了满足这些要求,SCU使用单指令多数据超大指令字(SIMD-VLIW)微体系结构和一个单指令集来利用DSMS的独特特性,例如单遍元组处理,窗口运算符和固有的数据级别并行性。新颖的反向分布式寄存器文件。为了更好地解释SCU中各个单元的指令集,设计和功能,本文还简要介绍了SymQL,SymQL是一种程序查询语言,我们开发该程序以描述可在SCU上执行的查询。最后,本文使用四个代表通用数据流处理用例的查询来介绍SCU的性能,其中之一类似于在《线性道路基准》中找到的查询。通过在SCU仿真中使用这些查询,我们发现SCU比在AMD Opteron 2350四核处理器上运行的纯软件DSMS优越1.5–42倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号