首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >GenFin: Genetic Algorithm-Based Multiobjective Statistical Logic Circuit Optimization Using Incremental Statistical Analysis
【24h】

GenFin: Genetic Algorithm-Based Multiobjective Statistical Logic Circuit Optimization Using Incremental Statistical Analysis

机译:GenFin:使用增量统计分析的基于遗传算法的多目标统计逻辑电路优化

获取原文
获取原文并翻译 | 示例

摘要

As the semiconductor technology node scales into the deep submicrometer regime, it has become very difficult to obtain high IC yields because the process–voltage–temperature variations induce large spreads in delay and power. In this paper, we propose a new framework, called GenFin, which is, as far as we know, the first to target the multiobjective yield optimization of logic circuits. Since FinFETs are a promising substitute for CMOS at 22-nm technology node and beyond, we evaluate the framework with a 22-nm FinFET logic library. By combining the power of genetic algorithm (GA) and adaptive multiobjective optimization, GenFin produces a set of nondominated logic circuits whose timing, leakage power, and dynamic power yields are simultaneously optimized. This can help designers make tradeoff decisions wisely and avoid suboptimal solutions. We also propose an incremental statistical circuit analyzer, called incremental FinPrin, that speeds up the statistical static timing analysis by up to and the statistical power analysis by up to , while incurring errors of only up to 0.031% in mean and 0.74% in standard deviation relative to nonincremental analysis. We use heuristics based on the deterministic timing analysis and gate criticality to reduce the GA search space and also improve the quality of its solutions. We present extensive experimental results to demonstrate the efficacy of GenFin.
机译:随着半导体技术节点扩展到深亚微米范围,获得高IC产量已经变得非常困难,因为工艺-电压-温度变化会引起延迟和功率的大范围扩展。在本文中,我们提出了一个名为GenFin的新框架,据我们所知,它是第一个针对逻辑电路的多目标良率优化的框架。由于FinFET在22nm及以后的技术节点上可以替代CMOS,因此我们使用22nm FinFET逻辑库评估该框架。通过将遗传算法(GA)的功率与自适应多目标优化相结合,GenFin产生了一组非支配逻辑电路,其时序,泄漏功率和动态功率产出均得到了优化。这可以帮助设计人员明智地权衡决策,避免出现次优解决方案。我们还提出了一种增量统计电路分析仪,称为增量FinPrin,它可以将静态统计时序分析的速度提高多达5%,将统计功率分析的速度提高多达5%,而平均误差仅为0.031%,标准偏差仅为0.74%相对于非增量分析。我们使用基于确定性时序分析和门临界的启发式算法来减少GA搜索空间,并提高其解决方案的质量。我们提出了广泛的实验结果,以证明GenFin的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号